[1]云海姣,董玉冰,王晓丽.结合人眼视觉特性和模糊集理论的彩色图像增强[J].南京师范大学学报(工程技术版),2018,18(03):025.[doi:10.3969/j.issn.1672-1292.2018.03.004]
 Yun Haijiao,Dong Yubing,Wang Xiaoli.Color Image Enhancement Combining Human VisualCharacteristics with Fuzzy Set Theory[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(03):025.[doi:10.3969/j.issn.1672-1292.2018.03.004]
点击复制

结合人眼视觉特性和模糊集理论的彩色图像增强
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
18卷
期数:
2018年03期
页码:
025
栏目:
人工智能算法与应用专栏
出版日期:
2018-09-30

文章信息/Info

Title:
Color Image Enhancement Combining Human VisualCharacteristics with Fuzzy Set Theory
文章编号:
1672-1292(2018)03-0025-08
作者:
云海姣董玉冰王晓丽
长春大学电子信息工程学院,吉林 长春 130022
Author(s):
Yun HaijiaoDong YubingWang Xiaoli
School of Electronic Information Engineering,Changchun University,Changchun 130022,China
关键词:
图像增强人眼视觉特性模糊集理论全局亮度调节局部对比度增强
Keywords:
image enhancementhuman visual characteristicsfuzzy set theoryglobal brightness modulationlocal contrast enhancement
分类号:
TP751.1
DOI:
10.3969/j.issn.1672-1292.2018.03.004
文献标志码:
A
摘要:
针对不均匀光照或低照度的彩色图像对比度低的问题,提出一种结合人眼视觉特性的全局亮度调节和局部对比度增强的方法. 首先,将已有的RGB图像转换到HSV彩色空间,根据人眼视觉特性,自适应生成算法参数,非线性调节图像全局亮度和动态范围,提高图像亮度的整体水平; 然后,结合模糊集理论增强算法特性,建立局部对比度隶属度函数,非线性调整图像的局部对比度细节信息; 最后,将增强后的图像由HSV空间转换回RGB空间,完成彩色空间恢复. 实验表明,该方法能够有效地增强低照度图像的全局亮度和局部对比度,提升低照度图像的视见度.
Abstract:
Aiming at low illumination and contrast of color images,we propsose a novel global brightness modulation and local contrast adaptive enhancement method combined with human visual characteristics and fuzzy set theory. Firstly,through nonlinear global brightness mapping model to adjust the dynamic range of the images,the color images transform from RGB color space into HSV color space,which improves the overall level of image brightness. Next,according to fuzzy set theory,it establishes membership function to adjust the local contrast of image details nonlinearly. Finally,the enhanced images are transformed from HSV color space into RGB color space,restoring color space. Experimental results show that this algorithm has an excellent enhancement effect,which can enhance the global brightness and local contrast,and improve visibility of low illumination image.

参考文献/References:

[1] 武昆,李桂菊,韩广良,等. 四元数引导滤波彩色图像细节增强[J]. 计算机辅助设计与图形学学报,2017,29(3):419-427.
WU K,LI G J,HAN G L,et al. Color image detail enhancement based on quaternion guided filter[J]. Journal of computer-aided design and computer graphics,2017,29(3):419-427.(in Chinese)
[2]云海姣,吴志勇,王冠军,等. 结合直方图均衡和模糊集理论的红外图像增强[J]. 计算机辅助设计与图形学学报,2015,27(8):1498-1505.
YUN H J,WU Z Y,WANG G J,et al. Enhancement of infrared image combined with histogram equalization and fuzzy set theory[J]. Journal of computer-aided design and computer graphics,2015,27(8):1498-1505.
[3]赵宏宇,肖创柏,禹晶,等. 马尔科夫随机场模型下的Retinex夜间彩色图像增强[J]. 光学精密工程,2014,22(4):1048-1055.
ZHAO H Y,XIAO C B,YU J,et al. A Retinex algorithm for night color image enhancement by MRF[J]. Optics and precision engineering,2014,22(4):1048-1055.(in Chinese)
[4]赵军辉,吴玉峰,胡坤融,等. 基于Lab色彩空间和色调映射的彩色图像增强算法[J]. 计算机科学,2018,45(2):297-300.
ZHAO J H,WU Y F,HU K R,et al. Color image enhancement algorithm based on lab color space and tone mapping[J]. Computer science,2018,45(2):297-300.(in Chinese)
[5]JOBSON D J,RAHMAN Z,WOODELL G A. A multiscale Retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE transactions on image processing,1997,6(7):965-976.
[6]WANG Y,WANG H,YIN C,et al. Biologically inspired image enhancement based on Retinex[J]. Neurocomputing,2016,177:373-384.
[7]张菲菲,谢伟,石强,等. 人眼视觉感知驱动的梯度域低照度图像对比度增强[J]. 计算机辅助设计与图形学学报,2014,26(11):1981-1988.
ZHANG F F,XIE W,SHI Q,et al. A perception-inspired contrast enhancement method for low-light images in gradient domain[J]. Journal of computer-aided design and computer graphics,2014,26(11):1981-1988.(in Chinese)
[8]CHEN Z Y,ABIDI B R,PAGE D L,et al. Gray-Level Grouping(GLG):an automatic method for optimized image contrast enhancement-part I:the basic method[J]. IEEE transactions on image processing,2006,15(8):2290-2302.
[9]PAL S K,KING R A. Image enhancement using smoothing with fuzzy sets[J]. IEEE transactions on systems man and cybernetics,1981,11(7):494-501.
[10]王保平,刘怀亮,李南京,等. 一种新的自适应图像模糊增强算法[J]. 西安电子科技大学学报(自然科学版),2005,32(2):307-313.
WANG B P,LIU H L,LI N J,et al. A novel adaptive image fuzzy enhancement algorithm[J]. Journal of Xidian university(natural science edition),2005,32(2):307-313.(in Chinese)
[11]秦绪佳,王慧玲,杜轶诚,等. HSV 色彩空间的Retinex结构光图像增强算法[J]. 计算机辅助设计与图形学学报,2013,25(4):488-493.
QIN X J,WANG H L,DU Y C,et al. Structured light image enhancement algorithm based on Retinex in HSV color space[J]. Journal of computer-aided design and computer graphics,2013,25(4):488-493.(in Chinese)
[12]ZHOU Z G,SANG N,HU X R. Global brightness and local contrast adaptive enhancement for low illumination color image[J]. Optik-international journal for light and electron optics,2014,125(6):1795-1799.
[13]王守觉,丁兴号,廖英豪,等. 一种新的仿生彩色图像增强方法[J]. 电子学报,2008,36(10):1970-1973.
WANG S J,DING X H,LIAO Y H,et al. A novel bio-inspired algorithm for color image enhancement[J]. Acta electronica sinica,2008,36(10):1970-1973.(in Chinese)
[14]郑江云,江巨浪,黄忠. 基于RGB灰度值缩放的彩色图像增强[J]. 计算机工程,2012,38(2):226-228.
ZHENG J Y,JIANG J L,HUANG Z. Color image enhancement based on RGB gray value scaling[J]. Computer engineering,2012,38(2):226-228.(in Chinese)
[15]GUO P,YANG P X,LIU Y,et al. An adaptive enhancement algorithm for low illumination image based on hue reserving[C]//Proc of Cross Strait Quad-Regional Radio Science and Wireless Technology Conference(CSQRWC). Harbin,China,2011:1247-1250.
[16]RAJU G,NAIR M S. A fast and efficient color image enhancement method based on fuzzy-logic and histogram[J]. Internation journal of electronics and communications,2014,68:237-243.

备注/Memo

备注/Memo:
收稿日期:2018-04-18.
基金项目:国家自然科学基金青年基金(61405191)、教育部春晖计划(Z2017025).
通讯联系人:云海姣,博士,讲师,研究方向:数字图像处理. E-mail:yunhj@ccu.edu.cn
更新日期/Last Update: 2018-09-30