[1]朱冬雪,褚红燕,鹿世化,等.空气源热泵中光电转换测霜与类复叠循环除霜相结合新型技术[J].南京师范大学学报(工程技术版),2018,18(04):027.[doi:10.3969/j.issn.1672-1292.2018.04.005]
 Zhu Dongxue,Chu Hongyan,Lu Shihua,et al.The New Technology of Combination of Photoelectric Conversionand Frost-Like Defrosting in Air Source Heat[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(04):027.[doi:10.3969/j.issn.1672-1292.2018.04.005]
点击复制

空气源热泵中光电转换测霜与类复叠循环除霜相结合新型技术
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
18卷
期数:
2018年04期
页码:
027
栏目:
动力工程
出版日期:
2018-12-30

文章信息/Info

Title:
The New Technology of Combination of Photoelectric Conversionand Frost-Like Defrosting in Air Source Heat
文章编号:
1672-1292(2018)04-0027-06
作者:
朱冬雪褚红燕鹿世化宁婕妤高晓蕾
南京师范大学能源与机械工程学院,江苏 南京 210042
Author(s):
Zhu DongxueChu HongyanLu ShihuaNing JieyuGao Xiaolei
School of Energy and Mechanical Engineering,Nanjing Normal University,Nanjing 210042,China
关键词:
光电转换测霜类复叠循环除霜智能控制系统误除霜
Keywords:
photoelectric conversionfrost-like defrostingintelligent control systemfalse defrosting
分类号:
TK519
DOI:
10.3969/j.issn.1672-1292.2018.04.005
文献标志码:
A
摘要:
分析了多种测霜、除霜技术的优缺点,提出将光电转换测霜与类复叠循环除霜相结合可获得更有效的测霜、除霜效果. 具体内容包括:把现已成熟的光电原理运用到测霜装置上,用光电转换测霜,当光电信号的电压值达到除霜要求时,通过智能控制系统及时转换到除霜模式,高压压缩机继续制热,低压压缩机进行除霜循环,实现制热和除霜同时运行. 实验结果表明,测霜、除霜技术的结合既避免了误除霜事故的发生,也保证了压缩机的稳定运行,且缩短了除霜时间,改善了除霜效果.
Abstract:
The advantages and disadvantages of various frosting and defrosting techniques are analyzed. It is proposed to combine the photoelectric conversion frosting with the cascade-like cyclic defrosting to obtain more effective frosting and defrosting effects. The specific contents include: applying the now mature photoelectric principle to the frost measuring device. In using photoelectric conversion to measure frost,when the voltage value of the photoelectric signal reaches the defrosting requirement,the intelligent control system switches to the defrosting mode in time. The high pressure compressor continue to heat. A Low-pressure compressor performs defrost cycle. It realizes heating and defrosting at the same time. The test results show that the combination of frosting and defrosting technology avoids the occurrence of false defrosting accidents and ensures the running stability,a shortening defrosting time and an improved defrosting effect of the compressor.

参考文献/References:

[1] 曹小林,曹双俊,段飞,等. 空气源热泵除霜问题研究现状与展望[J]. 流体机械,2011,39(4):75-77.
CAO X L,CAO S J,DUAN F,et al. Current situation and development prospect of air source heat pump defrosting research[J]. Fluid machinery,2011,39(4):75-77.(in Chinese)
[2]SANDERS C T. Frost formation:the influence of frost formation and defrosting on the performance of air coolers[D]. Nether lands:Delft University of Technology,1974.
[3]NIEDERER D H. Frost and defrosting effects on coil heat transfer[C]//ASHRAE,1976 Winter Conference. Texas:ASHRAE Transaction,1976.
[4]HOFFENBAKER N,KLEIN S A,RENDL D T. Hot gas defrost model development and validation[J]. International journal of refrigeration,2005,28(1):605-615.
[5]XIAO J,WANG W,ZHAO Y H,et al. An analysis of the feasibility and characteristics of photoelectric technique applied in defrost-control[J]. International journal of refrigeration,2009,32:1350-1357.
[6]许东晟,陈汝东. 除霜和除霜控制研究[J]. 流体机械,2006,34(1):69-73.
XU D S,CHEN R D. Study on defrost and defrosting control[J]. Fluid machinery,2006,34(1):69-73.(in Chinese)
[7]曾晓程,王俊,王铁军,等. 空气能热泵智能除霜技术研究[J]. 低温与超导,2017,45(12):91-94.
ZENG X C,WANG J,WANG T J,et al. Research on intelligent defrosting technique of air energy heat pump[J]. Cryogenics and superconductivity,2015,45(12):91-94.(in Chinese)
[8]郑福珍,刘健,王全福. 蒸发器除霜起点确定的理论与实验研究[J]. 应用能源技术,2013,12(12):45-48.
ZHENG F Z,LIU J,WANG Q F. In addition to theoretical and experimental study of frost point determined evaporator[J]. Applied energy technology,2013,12(12):45-48.(in Chinese)
[9]王伟,刘景东,孙育英,等. 空气源热泵两种新型高效除霜控制方法的实测研究[J]. 制冷与空调,2017,17(3):67-76.
WANG W,LIU J D,SUN Y Y,et al. Field test study of two types of the novel efficient defrosting control methods for air source heat pumps[J]. Refrigeration and air-conditioning,2017,17(3):67-76.(in Chinese)
[10]董云达,付兰. 空气源热泵机组除霜性能实验研究[J]. 制冷与空调,2007,7(2):68-71.
DONG Y D,FU L. Experiment on defrosting performance of air source heat pump units[J]. Refrigeration and air-conditioning,2007,7(2):68-71.(in Chinese)
[11]WANG Z Y,WANG X M,DONG Z M. Defrost improvement by heat pump refrigerant charge compen sating[J]. Applied energy,2008,85(11):1050-1059.
[12]石文星,李先庭,邵双全. 房间空调器热气旁通法除霜分析及实验研究[J]. 制冷学报,2000(2):29-35.
SHI W X,LI X T,SHAO S Q. Experimental research on hot vapor bypass defrosting method[J]. Journal of refrigeration,2000(2):29-35.(in Chinese)
[13]BYUN J S,LEE J H,JEON C D. Frost retardation of an air-source heat pump by the hot gas by pass method[J]. Int J refrigeration,2008,31(2):328-334.
[14]黄东,袁秀玲. 风冷热泵冷热水机组热气旁通除霜与逆循环除霜性能对比[J]. 西安交通大学学报,2006,40(5):539-543.
HUANG D,YUAN X L. Comparison of dynamic characteristics between the hot gas bypass defrosting method and reverse cycle defrosting method on an air to water heat pump[J]. Journal of Xi’an jiaotong university,2006,40(5):539-543.(in Chinese)
[15]孙福涛,蒲亮. 一种空气源热泵除霜新技术研究[J]. 制冷与空调,2017,17(4):7-10.
SUN F T,PU L. Research on a new defrosting technology applied to air-source heat pump[J]. Refrigeration and air conditioning,2017,17(4):7-10.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2018-04-12.
基金项目:江苏省高校自然科学基金(16KJB120002)、国家自然科学基金青年基金(61603194).
通讯联系人:褚红燕,博士,高级实验师,研究方向:非线性系统、网络控制系统. Email:63054@njnu.edu.cn
更新日期/Last Update: 2018-12-30