参考文献/References:
[1] 黄震华,张佳雯,田春岐,等. 基于排序学习的推荐算法研究综述[J]. 软件学报,2016,27(3):691-713.
HUANG Z H,ZHANG J W,TIAN C Q,et al. Survey on learning-to-rank based recommendation algorithms[J]. Journal of software,2016,27(3):691-713.(in Chinese)
[2]DIELEMAN S. Recommending music on spotify with deep learning[EB/OL]. [2014-08-05]. http://benanne.github.io/2014/08/05/spotify-cnns.html.
[3]ELKAHKY A M,SONG Y,HE X. A multi-view deep learning approach for cross domain user modeling in recommendation systems[C]//Proceedings of the 24th International Conference on World Wide Web. Florence,Italy,2015.
[4]COVINGTON P,ADAMS J,SARGIN E. Deep neural networks for youtube recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. Boston,USA,2016.
[5]CHENG H T,KOC L,HARMSEN J,et al. Wide and deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. Boston,USA,2016.
[6]RICCI F,ROKACH L,SHAPIRA B,et al. Recommender systems handbook[M]. Berlin:Springer,2011.
[7]刘青文. 基于协同过滤的推荐算法研究[D]. 合肥:中国科学技术大学,2013.
LIU Q W. Research on recommender systems based on collaborative filtering[D]. Hefei:University of Science and Technology of China,2013.(in Chinese)
[8]ZHENG L. A survey and critique of deep learning on recommender systems[EB/OL]. [2018-03-06]. https://bdsc.lab.uic.edu/docs/survey-critique-deep.pdf.
[9]项亮. 推荐系统实践[M]. 北京:人民邮电出版社,2012.
XIANG L. Recommended system practice[M]. Beijing:Posts and Telecom Press,2012.(in Chinese)
[10]MIYAHARA K,PAZZANI M J. Collaborative filtering with the simple Bayesian classifier[M]//MIZOGUCHI R,SLANEY J. PRICAI 2000 topics in artifical intelligence. Berlin:Springer,2000:679-689.
[11]SU X,KHOSHGOFTAAR T M. Collaborative filtering for multi-class data using belief nets algorithms[C]//IEEE International Conference on TOOLS with Artificial Intelligence. Arlington,USA,2006.
[12]CHEE S H S,HAN J,WANG K. RecTree:an efficient collaborative filtering method[C]//Proceedings of Data Warehousing and Knowledge Discovery. Munich,Germany,2001.
[13]UNGAR L H,FOSTER D P. Clustering methods for collaborative filtering[C]//Proceedings of AAAI Workshop on Recommendation Systems. Madison,USA,1998.
[14]CANNY J. Collaborative filtering with privacy via factor analysis[C]//International ACM SIGIR Conference on Research and Development in Information Retrieval. Tampere,Finland,2002.
[15]VUCETIC S,OBRADOVIC Z. Collaborative filtering using a regression-based approach[J]. Knowledge and information systems,2005,7(1):1-22.
[16]LEMIRE D,MACLACHLAN A. Slope one predictors for online rating-based collaborative filtering[C]//Proceedings of the 2005 SIAM International Conference on Data Mining. Newport Beach,USA,2005.
[17]BLEI D M,NG A Y,JORDAN M I. Latent dirichlet allocation[J]. Journal of machine learning research,2003,3:993-1022.
[18]KOREN Y. Factorization meets the neighborhood:a multifaceted collaborative filtering model[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas,USA,2008.
[19]JANNACH D,ZANKER M,FELFERNIG A,et al. Recommender systems:an introduction[M]. Cambridge:Cambridge University Press,2010.
[20]杨文龙. 基于动态集成方法的混合推荐系统研究[D]. 济南:山东大学,2015.
YANG W L. Research on hybrid recommender systems on the dynamically integrated Methodologies[D]. Jinan:Shandong University,2015.(in Chinese)
[21]KOREN Y. The bellkor solution to the netflix grand prize[J]. Netflix prize documentation,2009,81:1-10.
[22]SMYTH B,COTTER P. Personalized electronic program guides for digital TV[J]. AI magazine,2001,22(2):89-98.
[23]SARWAR B M,KONSTAN J A,BORCHERS A,et al. Using filtering agents to improve prediction quality in the grouplens research collaborative filtering system[C]//Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work. Seattle,USA,1998.
[24]CONDLIFF M K,LEWIS D D,MADIGAN D,et al. Bayesian mixed-effects models for recommender systems[C]//ACM SIGIR’99 Workshop on Recommender Systems:Algorithms and Evaluation. Berkeley,USA,1999.
[25]LECUN Y,BENGIO Y,HINTON G. Deep learning[J]. Nature,2015,521(7553):436-444.
[26]孙志远,鲁成祥,史忠植,等. 深度学习研究与进展[J]. 计算机科学,2016,43(2):1-8.SUN Z Y,LU C X,SHI Z Z,et al. Research and advances on deep learning[J]. Computer science,2016,43(2):1-8.(in Chinese)
[27]KRIZHEVSKY A,SUTSKEVER I,HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. Lake Tahoe,USA,2012.
[28]DONAHUE J,JIA Y,VINYALS O,et al. DeCAF:a deep convolutional activation feature for generic visual recognition[C]//Proceedings of the 31st International Conference on Machine Learning. Beijing,China,2014.
[29]KARPATHY A,TODERICI G,SHETTY S,et al. Large-scale video classification with convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus,USA,2014.
[30]LI J,MONROE W,RITTER A,et al. Deep reinforcement learning for dialogue generation[DB/OL]. [2018-03-06]. https://arxiv.org/abs/1606.01541.
[31]BORDES A,CHOPRA S,WESTON J. Question answering with subgraph embeddings[DB/OL]. [2018-03-06]. https://arxiv.org/abs/1406.3676.
[32]SUTSKEVER I,VINYALS O,LE Q V. Sequence to sequence learning with neural networks[C]//Advances in Neural Information Processing Systems. Montreal,Canada,2014.
[33]MIKOLOV T,DEORAS A,POVEY D,et al. Strategies for training large scale neural network language models[C]//IEEE Workshop on Automatic Speech Recognition and Understanding. Waikoloa,USA,2011.
[34]HINTON G,DENG L,YU D,et al. Deep neural networks for acoustic modeling in speech recognition:the shared views of four research groups[J]. IEEE signal processing magazine,2012,29(6):82-97.
[35]MA J,SHERIDAN R P,LIAW A,et al. Deep neural nets as a method for quantitative structure-activity relationships[J]. Journal of chemical information and modeling,2015,55(2):263-274.
[36]HELMSTAEDTER M,BRIGGMAN K L,TURAGA S C,et al. Connectomic reconstruction of the inner plexiform layer in the mouse retina[J]. Nature,2013,500(7461):168-174.
[37]LEUNG M K K,XIONG H Y,LEE L J,et al. Deep learning of the tissue-regulated splicing code[J]. Bioinformatics,2014,30(12):121-129.
[38]郭丽丽,丁世飞. 深度学习研究进展[J]. 计算机科学,2015,42(5):28-33.
GUO L L,DING S F. Research progress on deep learning[J]. Computer science,2015,42(5):28-33.(in Chinese)
[39]OORD A V D,DIELEMAN S,SCHRAUWEN B. Deep content-based music recommendation[C]//Conference on Neural Information Processing Systems(NIPS 2013). Lake Tahoe,USA,2013.
[40]MCAULEY J,TARGETT C,SHI Q,et al. Image-based recommendations on styles and substitutes[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. Santiage,Chile,2015.
[41]ZHOU J,ALBATAL R,GURRIN C. Applying visual user interest profiles for recommendation and personalisation[C]//International Conference on Multimedia Modeling. Miami,USA,2016.
[42]BANSAL T,BELANGER D,MCCALLUM A. Ask the GRU:multi-task learning for deep text recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. Boston,USA,2016.
[43]ZANOTTI G,HORVATH M,BARBOSA L N,et al. Infusing collaborative recommenders with distributed representations[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. Boston,USA,2016.
[44]CHO K,VAN MERRIENBOER B,BAHDANAU D,et al. On the properties of neural machine translation:encoder-decoder approaches[DB/OL].
[2018-03-06]. https://arxiv.org/abs/1409.1259.
[45]WANG H,WANG N,YEUNG D Y. Collaborative deep learning for recommender systems[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney,Australia,2015.
[46]VINCENT P,LAROCHELLE H,LAJOIE I,et al. Stacked denoising autoencoders:learning useful representations in a deep network with a local denoising criterion[J]. Journal of machine learning research,2010,11:3371-3408.
[47]WANG C,BLEI D M. Collaborative topic modeling for recommending scientific articles[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego,USA,2011.
[48]WEI J,HE J,CHEN K,et al. Collaborative filtering and deep learning based recommendation system for cold start items[J]. Expert systems with applications,2017,69:29-39.
[49]KOREN Y. Collaborative filtering with temporal dynamics[J]. Communications of the ACM,2010,53(4):89-97.
[50]KIM D,PARK C,OH J,et al. Convolutional matrix factorization for document context-aware recommendation[C]//Proceedings of the 10th ACM Conference on Recommender Systems. Boston,USA,2016.
[51]SHEN X,YI B,ZHANG Z,et al. Automatic recommendation technology for learning resources with convolutional neural network[C]//2016 International Symposium on Educational Technology(ISET). Beijing,China,2016.
[52]LI S,KAWALE J,FU Y. Deep collaborative filtering via marginalized denoising auto-encoder[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. Melbourne,Austrilia,2015.
[53]SHIN D,CETINTAS S,LEE K C,et al. Tumblr blog recommendation with boosted inductive matrix completion[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. Melbourne,Austrilia,2015.
[54]LEI C,LIU D,LI W,et al. Comparative deep learning of hybrid representations for image recommendations[C]//IEEE Conference on Computer Vision and Pattern Recongnition. Las Vegas,USA,2016.
[55]HUANG P S,HE X,GAO J,et al. Learning deep structured semantic models for web search using clickthrough data[C]//Proceedings of the 22nd ACM International Conference on Information and Knowledge Management. San Francisco,USA,2013.
[56]HE X,LIAO L,ZHANG H,et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. Perth,Australia,2017.
[57]GENG X,ZHANG H,BIAN J,et al. Learning image and user features for recommendation in social networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago,Chile,2015.
[58]SALAKHUTDINOV R,MNIH A,HINTON G. Restricted Boltzmann machines for collaborative filtering[C]//Proceedings of the 24th International Conference on Machine Learning. Corralis,USA,2007.
[59]ZHENG Y,TANG B,DING W,et al. A neural autoregressive approach to collaborative filtering[C]//International Conference on Machine Learning. New York,USA,2016.
[60]LAROCHELLE H,MURRAY I. The neural autoregressive distribution estimator[C]//International Conference on Artifcial Intelligence and Statistics. Lauderdale,USA,2011.
[61]GEORGIEV K,NAKOV P. A non-IID framework for collaborative filtering with restricted Boltzmann machines[C]//International Conference on Machine Learning. Atlanta,USA,2013.
[62]SEDHAIN S,MENON A K,SANNER S,et al. Autorec:autoencoders meet collaborative filtering[C]//Proceedings of the 24th International Conference on World Wide Web. Florence,Italy,2015.
[63]STRUB F,GAUDEL R,MARY J. Hybrid recommender system based on autoencoders[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. Boston,USA,2016.
[64]WU Y,DUBOIS C,ZHENG A X,et al. Collaborative denoising auto-encoders for top-n recommender systems[C]//Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. San Francisco,USA,2016.
[65]DENG S,HUANG L,XU G,et al. On deep learning for trust-aware recommendations in social networks[J]. IEEE Transactions on neural networks and learning systems,2017,28(5):1164-1177.
[66]HIDASI B,KARATZOGLOU A,BALTRUNAS L,et al. Session-based recommendations with recurrent neural networks[C]//International Conference on Learning Representations. San Juan,Puerto Rico,2016.
[67]TAN Y K,XU X,LIU Y. Improved recurrent neural networks for session-based recommendations[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. Boston,USA,2016.
[68]KO Y J,MAYSTRE L,GROSSGLAUSER M. Collaborative recurrent neural networks for dynamic recommender systems[C]//Proceedings of the 8th Asian conference on Machine Learning. Hamiton,New Zealand,2016.
[69]DEVOOGHT R,BERSINI H. Collaborative filtering with recurrent neural networks[DB/OL]. [2018-03-06]. https://arxiv.org/abs/1608.07400.
[70]WU S,REN W,YU C,et al. Personal recommendation using deep recurrent neural networks in NetEase[C]//IEEE International Conference on Data Engineering. Paris,France,2016.
[71]LEE H,AHN Y,LEE H,et al. Quote recommendation in dialogue using deep neural network[C]//Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. Pisa,Italy,2016.
[72]SONG Y,ELKAHKY A M,HE X. Multi-rate deep learning for temporal recommendation[C]//Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. Pisa,Italy,2016.
[73]HUANG P S,HE X,GAO J,et al. Learning deep structured semantic models for web search using clickthrough data[C]//ACM International Conference on Information and Knowledge Management. San Francisco,USA,2013.
[74]DAI H,WANG Y,TRIVEDI R,et al. Recurrent coevolutionary feature embedding processes for recommendation[DB/OL]. [2018-03-06]. https://arxiv.org/abs/1609.03675.
[75]DAI H,WANG Y,TRIVEDI R,et al. Recurrent coevolutionary latent feature processes for continuous-time recommendation[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. Boston,USA,2016.
[76]ZUO Y,ZENG J,GONG M,et al. Tag-aware recommender systems based on deep neural networks[J]. Neurocomputing,2016,204:51-60.
[77]XU Z,CHEN C,LUKASIEWICZ T,et al. Tag-aware personalized recommendation using a deep-semantic similarity model with negative sampling[C]//Proceedings of the 25th ACM International Conference on Information and Knowledge Management. Singapore,2016.
[78]WANG H,SHI X,YEUNG D Y. Relational stacked denoising autoencoder for tag recommendation[C]//Proceedings of the 29th AAAI Conference on Artifical Intelligence. Austin,USA,2015.
[79]GUPTA A K,NAGAR D K. Matrix variate normal distribution[M]. Boca Raton:CRC Press,1999.
[80]HAMEL P,LEMIEUX S,BENGIO Y,et al. Temporal pooling and multiscale learning for automatic annotation and ranking of music audio[C]//International Society for Music Information Retrieval Conference. Miami,USA,2011.
[81]RAWAT Y S,KANKANHALLI M S. ConTagNet:exploiting user context for image tag recommendation[C]//Proceedings of the 2016 ACM on Multimedia Conference. Amsterdam,Netherlands,2016.
相似文献/References:
[1]吴佳炜,沈玲玲,钱 钢.融合项目聚类和时间权重的动态协同过滤算法[J].南京师范大学学报(工程技术版),2017,17(03):063.[doi:10.3969/j.issn.1672-1292.2017.03.010]
Wu Jiawei,Shen Lingling,Qian Gang.Dynamic Collaborative Filtering Algorithm FusingItem Clustering and Time Weight[J].Journal of Nanjing Normal University(Engineering and Technology),2017,17(04):063.[doi:10.3969/j.issn.1672-1292.2017.03.010]
[2]程显毅,胡海涛,季国华,等.基于深度学习监控场景下的多尺度目标检测算法研究[J].南京师范大学学报(工程技术版),2018,18(03):033.[doi:10.3969/j.issn.1672-1292.2018.03.005]
Cheng Xianyi,Hu Haitao,Ji Guohua,et al.Research on Algorithm of Multi-Scale Target DetectionBased on Deep Learning in Monitoring Scenario[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(04):033.[doi:10.3969/j.issn.1672-1292.2018.03.005]
[3]陈 扬,曾 诚,程 成,等.一种基于CNN的足迹图像检索与匹配方法[J].南京师范大学学报(工程技术版),2018,18(03):039.[doi:10.3969/j.issn.1672-1292.2018.03.006]
Chen Yang,Zeng Cheng,Cheng Cheng,et al.A CNN-based Approach to Footprint Image Retrieval and Matching[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(04):039.[doi:10.3969/j.issn.1672-1292.2018.03.006]
[4]郝 坤,张天坤,史振威.基于时空特征的热带气旋强度预测方法[J].南京师范大学学报(工程技术版),2019,19(03):001.[doi:10.3969/j.issn.1672-1292.2019.03.001]
Hao Kun,Zhang Tiankun,Shi Zhenwei.An Tropical Cyclone Intensity Prediction MethodBased on Spatial-Temporal Features[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(04):001.[doi:10.3969/j.issn.1672-1292.2019.03.001]
[5]任媛媛,张显峰,马永建,等.基于卷积神经网络的无人机遥感影像农村建筑物目标检测[J].南京师范大学学报(工程技术版),2019,19(03):029.[doi:10.3969/j.issn.1672-1292.2019.03.005]
Ren Yuanyuan,Zhang Xianfeng,Ma Yongjian,et al.Target Detection of Rural Buildings in UAV Remote Sensing ImagesBased on Convolutional Neural Network[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(04):029.[doi:10.3969/j.issn.1672-1292.2019.03.005]
[6]许博鸣,刘晓峰,业巧林,等.基于卷积神经网络面向自然场景建筑物识别技术的移动端应用[J].南京师范大学学报(工程技术版),2019,19(03):037.[doi:10.3969/j.issn.1672-1292.2019.03.006]
Xu Boming,Liu Xiaofeng,Ye Qiaolin,et al.A Convolutional Neural Network Based on Mobile Application forIdentification of Buildings in Natural Scene[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(04):037.[doi:10.3969/j.issn.1672-1292.2019.03.006]
[7]吴燕如,珠 杰,管美静.基于深度学习的藏文现代印刷物版面检测技术研究[J].南京师范大学学报(工程技术版),2021,21(01):044.[doi:10.3969/j.issn.1672-1292.2021.01.007]
Wu Yanru,Zhu Jie,Guan Meijing.Research on Layout Inspection Technology of ModernTibetan Prints Based on Deep Learning[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(04):044.[doi:10.3969/j.issn.1672-1292.2021.01.007]
[8]梁秦嘉,刘 怀,陆 飞.基于改进YOLOv3模型的交通视频目标检测算法研究[J].南京师范大学学报(工程技术版),2021,21(02):047.[doi:10.3969/j.issn.1672-1292.2021.02.008]
Liang Qinjia,Liu Huai,Lu Fei.Traffic Video Target Detection Algorithm Based on Improved YOLOv3[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(04):047.[doi:10.3969/j.issn.1672-1292.2021.02.008]
[9]苏 叶,李 婧,徐寅林.手骨X光片骨龄预测中图像预处理的研究[J].南京师范大学学报(工程技术版),2021,21(02):054.[doi:10.3969/j.issn.1672-1292.2021.02.009]
Su Ye,Li Jing,Xu Yinlin.Research on Image Preprocessing in Predicting the Bone Age ofHand Bone X-ray Films[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(04):054.[doi:10.3969/j.issn.1672-1292.2021.02.009]
[10]王立凯,曲维光,魏庭新,等.基于深度学习的中文零代词识别[J].南京师范大学学报(工程技术版),2021,21(04):019.[doi:10.3969/j.issn.1672-1292.2021.04.004]
Wang Likai,Qu Weiguang,Wei Tingxin,et al.Identification of Chinese Zero Pronouns Based on Deep Learning[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(04):019.[doi:10.3969/j.issn.1672-1292.2021.04.004]