[1]秦露雯,华君叶,张秀强,等.不同形状疏水性微肋阵内流场Micro-PIV流动可视化研究[J].南京师范大学学报(工程技术版),2019,19(02):007.[doi:10.3969/j.issn.1672-1292.2019.02.002]
 Qin Luwen,Hua Junye,Zhang Xiuqiang,et al.Micro-PIV Measurement and Numerical Simulation of Flow Fieldin Micro Pin-Fin Heat Sink with Different Shapes[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(02):007.[doi:10.3969/j.issn.1672-1292.2019.02.002]
点击复制

不同形状疏水性微肋阵内流场Micro-PIV流动可视化研究
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
19卷
期数:
2019年02期
页码:
007
栏目:
能源与机械工程
出版日期:
2019-06-30

文章信息/Info

Title:
Micro-PIV Measurement and Numerical Simulation of Flow Fieldin Micro Pin-Fin Heat Sink with Different Shapes
文章编号:
1672-1292(2019)02-0007-11
作者:
秦露雯1华君叶12张秀强1赵孝保12祝 叶1
(1.南京师范大学能源与机械工程学院,江苏 南京 210042)(2.南京师范大学江苏省能源系统过程转化与减排技术工程实验室,江苏 南京 210042)
Author(s):
Qin Luwen1Hua Junye12Zhang Xiuqiang1Zhao Xiaobao12Zhu Ye1
(1.School of Energy and Mechanical Engineering,Nanjing Normal University,Nanjing 210042,China)(2.Engineering Laboratory of Energy System Process Conversion and Emission Reduction Technology of Jiangsu Province,Nanjing Normal University,Nanjing 210042,China)
关键词:
疏水性微肋阵微肋阵接触角流场Micro-PIV系统
Keywords:
hydrophobic micro pin-fin arraydifferent shapes of pin-fincontact angleflow fieldMicro-PIV system
分类号:
TK124
DOI:
10.3969/j.issn.1672-1292.2019.02.002
文献标志码:
A
摘要:
运用Micro-PIV显微粒子图像测速系统对不同截面形状、不同接触角微肋阵的流动特性展开可视化研究. 通过制备接触角为83°、99.5°、121.5°、151.5°的疏水表面,研究Re数为100450时工质绕流圆形椭圆形和菱形微肋阵速度与流线变化,并对流场进行分析. 实验结果表明,在圆形微肋阵中尾涡的出现相比于宏观尺度有明显延迟,直到Re达到250时在中间的圆柱尾部才出现对称漩涡. 对比3种形状微肋阵可发现,椭圆形具有的流线型结构和菱形具有的细长结构不易发生边界层分离. 在经过疏水性处理后,圆形针肋尾部的边界层分离明显延迟,接触角为151.5°的表面边界层最晚分离.
Abstract:
The micro-particle image velocimetry(Micro-PIV)system has been used to visualize the flow distribution of micro pin-fin arrays with different shapes and contact angles. By preparing hydrophobic surfaces with contact angles of 83°,99.5°,121.5° and 151.5°,the velocity and streamline of working fluid flows across circular,ellipse and diamond micro pin-fin arrays when Reynolds numbers ranging from 100 to 450 have been analyzed,and the flow field has been investigated as well. The experimental results show that the appearance of vortices at the back of circular pin-fin is significantly delayed compared with the macroscale,and that symmetrical vortices do not appear at the tail of middle cylinder until Reynolds number reaches 250. Comparing the three kinds of micro pin-fin arrays,it can be found that the ellipse with the streamlined structure and the diamond with slender structure cause the results that the boundary layer separation is not easy to occur. After hydrophobic treatment,the separation of boundary layer at the tail of circular pin-fin is significantly delayed,and the boundary layer of the surface with contact angle of 151.5° is separated latestly.

参考文献/References:

[1] REZAEI O,AKBARI O A,MARZBAN A,et al. The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel[J]. Physica E:low-dimensional systems and nanostructures,2017,93:179-189.
[2]LI Y,XIA G,JIA Y,et al. Experimental investigation of flow boiling performance in microchannels with and without triangular cavities — a comparative study[J]. International journal of heat & mass transfer,2017,108:1511-1526.
[3]PRAJAPATI Y K,PATHAK M,KHAN M K. Bubble dynamics and flow boiling characteristics in three different microchannel configurations[J]. International journal of thermal sciences,2017,112:371-382.
[4]张承武,浦龙梅,姜桂林,等. 不同截面形状微肋片内流动阻力特性[J]. 化工学报,2014,65(6):2042-2048.
ZHANG C W,PU L M,JIANG G L,et al. Resistance characteristics of micro pin fins with different cross-section shapes[J]. CIESC journal,2014,65(6):2042-2048.(in Chinese)
[5]杨宇辰,夏国栋,陈卓,等. 不同孔隙率圆形微针肋热沉流动及传热特性[J]. 工程热物理学报,2017(8):128-132.
YANG Y C,XIA G D,CHEN Z,et al. Flow and heat transfer characteristics across circular shaped micro pin-fin heat sinks with different porosity[J]. Journal of engineering thermophysics,2017(8):128-132.(in Chinese)
[6]GUAN N,LIU Z G,ZHANG C W. Numerical investigation on heat transfer of liquid flow at low Reynolds number in micro-cylinder-groups[J]. Heat & mass transfer,2012,48(7):1141-1153.
[7]GUAN N,TAO L,GUI L J. Influence of heating load on heat transfer characteristics in micro-pin-fin arrays[J]. Heat & mass transfer,2016,52(2):393-405.
[8]邱德来,管宁,张承武,等. 加热功率对三角形微肋阵内流动与对流换热特性的影响[J]. 化工学报,2015,66(6):2062-2069.
QIU D L,GUAN N,ZHANG C W,et al. Effect of different heating power on flow and convective heat transfer characteristics of triangle micro pin fins[J]. CIESC journal,2015,66(6):2062-2069.(in Chinese)
[9]谢海波,傅新,杨华勇,等. 典型微管道流场数值模拟与Micro-PIV检测研究[J]. 机械工程学报,2006,42(5):32-38.
XIE H B,FU X,YANG H Y,et al. Simulation and Micro-PIV research on classical microchannel flow[J]. Chinese journal of mechanical engineering,2006,42(5):32-38.(in Chinese)
[10]ZHAI Y,XIA G D,CHEN Z,et al. Micro-PIV study of flow and the formation of vortex in micro heat sinks with cavities and ribs[J]. International journal of heat & mass transfer,2016,98:380-389.
[11]WANG Y,NAYEBZADEH A,YU X,et al. Local heat transfer in a microchannel with a pin fin-experimental issues and methods to mitigate[J]. International journal of heat & mass transfer,2017,106:1191-1204.
[12]WANG Y,SHIN J H,WOODCOCK C,et al. Experimental and numerical study about local heat transfer in a microchannel with a pin fin[J]. International journal of heat & mass transfer,2018,121:534-546.
[13]徐明,王昊利. 基于低密度粒子图像叠加的Micro-PIV速度场测量[J]. 实验流体力学,2013,27(2):106-112.
XU M,WANG H L. Measurement of velocity by Micro-PIV technique based on overlap of low density particle images[J]. Journal of experiments in fluid mechanics,2013,27(2):106-112.(in Chinese)
[14]崔珍珍. 微针肋热沉结构优化及Micro-PIV系统下单相与两相可视化研究[D]. 北京:北京工业大学,2013.
CUI Z Z. Study on structure optimization of micro-pin fin for heat transfer enhancement and single and two phase flow visualization based on Micro-PIV system[D]. Beijing:Beijing University of Technology,2013.(in Chinese)
[15]XU F,PAN Z,WU H. Experimental investigation on the flow transition in different pin-fin arranged microchannels[J]. Microfluidics & nanofluidics,2018,22:11.
[16]祝叶,管宁,李栋,等. 不同截面形状超疏水微肋阵内对流换热特性[J]. 化工学报,2017,68(1):74-82.
ZHU Y,GUAN N,LI D,et al. Convection heat transfer characteristics of super-hydrophoboc micro pin-fins with different cross-sectional shapes[J]. CIESC journal,2017,68(1):74-82.(in Chinese)
[17]姜桂林,管宁,张承武,等. 不同截面疏水性微肋阵内减阻特性[J]. 化工学报,2016,67(4):1258-1268.
JIANG G L,GUAN N,ZHANG C W,et al. Characteristics of drag reduction in different cross sections of hydrophobic micro pin fins[J]. CIESC journal,2016,67(4):1258-1268.(in Chinese)
[18]姜桂林,张承武,管宁,等. 水在不同管径超疏水性微管内的流动特性[J]. 山东科学,2015,28(1):20-27.
JIANG G L,ZHANG C W,GUAN N,et al. Flow characteristics of water in super-hydrophobic micro-tubes with different diameters[J]. Shandong science,2015,28(1):20-27.(in Chinese)
[19]王鹏伟. 多孔介质微流动特性的实验研究[D]. 杭州:中国计量学院,2014.
WANG P W. Experimental Study on the Micro Flow Characteristics in Porous Media[D]. Hangzhou:China Jiliang University,2014.(in Chinese)
[20]JOHN T J. Parametric study on the combined thermal and hydraulic performance of single phase micro pin-fin heat sinks part I:square and circle geometries[J]. International journal of thermal sciences,2010,49:2177-2190.

备注/Memo

备注/Memo:
收稿日期:2019-02-27.
基金项目:江苏省高校自然科学研究面上项目(16KJB470008)、江苏省自然科学基金面上研究项目(BK20151549).
通讯联系人:华君叶,博士,高级实验师,研究方向:强化传热. E-mail:huajunye@njnu.edu.cn
更新日期/Last Update: 2019-06-30