[1]贺 宇,史有群,陶 然,等.基于服装图像视觉特征的冷启动问题缓解[J].南京师范大学学报(工程技术版),2019,19(03):015.[doi:10.3969/j.issn.1672-1292.2019.03.003]
 He Yu,Shi Youqun,Tao Ran,et al.Mitigation of Cold-Start Problem Based on Visual Features of Clothing Images[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(03):015.[doi:10.3969/j.issn.1672-1292.2019.03.003]
点击复制

基于服装图像视觉特征的冷启动问题缓解
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
19卷
期数:
2019年03期
页码:
015
栏目:
计算机工程
出版日期:
2019-09-30

文章信息/Info

Title:
Mitigation of Cold-Start Problem Based on Visual Features of Clothing Images
文章编号:
1672-1292(2019)03-0015-06
作者:
贺 宇史有群陶 然罗 辛
东华大学计算机科学与技术学院,上海 201600
Author(s):
He YuShi YouqunTao RanLuo Xin
School of Computer Science and Technology,Donghua University,Shanghai 201600,China
关键词:
协同过滤矩阵分解冷启动图像视觉特征
Keywords:
collaborative filteringmatrix factorizationcold-startvisual feature
分类号:
TP391
DOI:
10.3969/j.issn.1672-1292.2019.03.003
文献标志码:
A
摘要:
冷启动问题是协同过滤推荐算法中被广泛关注的问题,它的存在严重影响协同过滤算法的推荐质量. 提出深度卷积神经网络提取的服装商品图像视觉特征用于计算用户对新商品喜好度的方法来缓解冷启动问题,并利用矩阵分解模型估算用户对服装商品的评分. 通过从服装商品图像视觉特征到商品特征向量的映射函数计算新商品的特征向量,给出了两种映射函数形式:K最近邻映射和线性映射. 实验结果表明,服装图像视觉特征能够有效缓解协同过滤算法冷启动问题.
Abstract:
The cold-start problem is a classic problem which has widely been concerned in the collaborative filtering recommendation algorithm. The problem seriously affects the recommendation quality of the collaborative filtering algorithm. This paper proposes a way to alleviate the cold-start problem by using the visual feature of the clothing product image learned by the deep convolutional neural network. The paper uses the matrix factorization model to estimate the users’ score on clothing items. In this paper,the items feature vector is calculated by a mapping function from the clothing product image visual feature to the items feature vector. The paper mentions two forms of mapping functions:K nearest neighbor mapping and linear mapping. The experimental results show that the visual feature of clothing image can effectively alleviate the cold-start problem of collaborative filtering algorithm.

参考文献/References:

[1] BREESE J S,HECKERMAN D,KADIE C M,et al. Empirical analysis of predictive algorithms for collaborative filtering[C]//Uncertainty in Artificial Intelligence. Madison,Wisconsin,USA,1998.
[2]JIA Y,SHELHAMER E,DONAHUE J,et al. Caffe:convolutional architecture for fast feature embedding[C]//ACM Multimedia. Orlando,Florida,USA,2014.
[3]SCHEIN A I,POPESCUL A,UNGAR L H,et al. Methods and metrics for cold-start recommendations[C]//International ACM SIGIR Conference on Research and Development in Information Retrieval. Tampere,Finland,2002.
[4]DONAHUE J,JIA Y,VINYALS O,et al. DeCAF:A deep convolutional activation feature for feneric visual recognition[C]//International Conference on Machine Learning. Beijing,China,2014.
[5]BOBADILLA J,ORTEGA F,HERNANDO A,et al. Recommender systems survey[J]. Knowledge based systems,2013,46:109-132.
[6]KOREN Y,BELL R M,VOLINSKY C,et al. Matrix factorization techniques for recommender systems[J]. IEEE computer,2009,42(8):30-37.
[7]POLAT H,DU W. SVD-based collaborative filtering with privacy[C]//ACM Symposium on Applied Computing. Santa Fe,New Mexico,USA,2005.
[8]MNIH A,SALAKHUTDINOV R. Probabilistic matrix factorization[C]//Neural Information Processing Systems. Vancouver,British Columbia,Canada,2007.
[9]BAO J,ZHENG Y,MOKBEL M F,et al. Location-based and preference-aware recommendation using sparse geo-social networking data[C]//Advances in Geographic Information Systems. Redondo Beach,California,USA,2012.
[10]DE MELO E V,NOGUEIRA E A,GULIATO D,et al. Content-based filtering enhanced by human visual attention applied to clothing recommendation[C]//International Conference on Tools with Artificial Intelligence. Vietri Sul Mare,Italy,2015.
[11]GATYS L A,ECKER A S,BETHGE M,et al. Image style transfer using convolutional neural networks[C]//Computer Vision and Pattern Recognition. Las Vegas,Nevada,USA,2016.
[12]KIAPOUR M H,HAN X,LAZEBNIK S,et al. Where to buy it:matching street clothing photos in online shops[C]//International Conference on Computer Vision. Santiago,Chile,2015.
[13]PRIYA S S,RAMAMURTHY B. Lung cancer detection using image processing techniques[J]. Research journal of pharmacy and technology,2018,11(5):2045-2049.
[14]KANAGAL B,AHMED A,PANDEY S,et al. Supercharging recommender systems using taxonomies for learning user purchase behavior[J]. ACM digital library,2012,5(10):956-967.
[15]HASTIE T,TIBSHIRANI R,FRIEDMAN J. The elements of statistical learning,second edition:data mining,inference,and prediction[M]. Germany:Springer,2009.
[16]MCAULEY J,TARGETT C,SHI Q,et al. Image-based recommendations on styles and substitutes[C]//International ACM SIGIR Conference on Research and Development in Information Retrieval. Santiago,Chile,2015.
[17]CORR R O,DENG J,SU H,et al. ImageNet large scale visual recognition challenge[J]. International journal of computer vision,2015,115(3):211-252.

相似文献/References:

[1]李 慧,李存华,王 霞.一种新颖的个性化视频搜索排名算法[J].南京师范大学学报(工程技术版),2008,08(04):182.
 L iH u,i L iCunhua,W ang X ia.A Novel Individualized V ideo Search Rank ing Algorithm[J].Journal of Nanjing Normal University(Engineering and Technology),2008,08(03):182.
[2]吴佳炜,沈玲玲,钱 钢.融合项目聚类和时间权重的动态协同过滤算法[J].南京师范大学学报(工程技术版),2017,17(03):063.[doi:10.3969/j.issn.1672-1292.2017.03.010]
 Wu Jiawei,Shen Lingling,Qian Gang.Dynamic Collaborative Filtering Algorithm FusingItem Clustering and Time Weight[J].Journal of Nanjing Normal University(Engineering and Technology),2017,17(03):063.[doi:10.3969/j.issn.1672-1292.2017.03.010]
[3]王俊淑,张国明,胡 斌.基于深度学习的推荐算法研究综述[J].南京师范大学学报(工程技术版),2018,18(04):033.[doi:10.3969/j.issn.1672-1292.2018.04.006]
 Wang Junshu,Zhang Guoming,Hu Bin.A Survey of Deep Learning Based Recommendation Algorithms[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(03):033.[doi:10.3969/j.issn.1672-1292.2018.04.006]
[4]张 莉,孙晓寒,郑晓晗.基于评分子空间和信任机制的协同过滤推荐算法[J].南京师范大学学报(工程技术版),2023,23(03):027.[doi:10.3969/j.issn.1672-1292.2023.03.004]
 Zhang Li,Sun Xiaohan,Zheng Xiaohan.Collaborative Filtering Method Based on User Rating Subspace and Trust Mechanism for Recommendation System[J].Journal of Nanjing Normal University(Engineering and Technology),2023,23(03):027.[doi:10.3969/j.issn.1672-1292.2023.03.004]

备注/Memo

备注/Memo:
收稿日期:2019-07-05.
基金项目:广东省协同创新与平台环境建设专项基金(2014B090908004)、东莞市专业镇创新服务平台建设项目.
通讯联系人:罗辛,博士,副教授,研究方向:机器学习、模式识别. E-mail:xluo@mail.dhu.edu.cn
更新日期/Last Update: 2019-09-30