[1]许里奥,马郦珏,裴一霖,等.石墨烯/聚苯胺水凝胶的制备及其在超级电容器中的应用[J].南京师范大学学报(工程技术版),2019,19(03):080.[doi:10.3969/j.issn.1672-1292.2019.03.012]
 Preparation of Graphene/Polyaniline Hydrogels for Supercapacitor.Preparation of Graphene/Polyaniline Hydrogels for Supercapacitor[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(03):080.[doi:10.3969/j.issn.1672-1292.2019.03.012]
点击复制

石墨烯/聚苯胺水凝胶的制备及其在超级电容器中的应用
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
19卷
期数:
2019年03期
页码:
080
栏目:
化学工程
出版日期:
2019-09-30

文章信息/Info

Title:
Preparation of Graphene/Polyaniline Hydrogels for Supercapacitor
文章编号:
1672-1292(2019)03-0080-07
作者:
许里奥1马郦珏2裴一霖2蒋 艳2孙美娇2蒋晓青1
(1.南京师范大学化学与材料科学学院,江苏 南京 210023)(2.南京师范大学教师教育学院,江苏 南京 210023)
Author(s):
Preparation of Graphene/Polyaniline Hydrogels for Supercapacitor
(1.School of Chemistry and Materials Science,Nanjing Normal University,Nanjing 210023,China)(2.School of Teacher Education,Nanjing Normal University,Nanjing 210023,China)
关键词:
石墨烯聚苯胺水凝胶超级电容器
Keywords:
graphenepolyanilinehydrogelsupercapacitor
分类号:
O64
DOI:
10.3969/j.issn.1672-1292.2019.03.012
文献标志码:
A
摘要:
为解决二维纳米材料石墨烯在使用中容易堆叠的问题,制备了石墨烯/聚苯胺复合水凝胶,先利用氧化石墨烯片层间的π-π相互作用、含氧官能团、氢键等作用力自组装而成三维水凝胶,再将苯胺单体化学氧化原位聚合并复合入石墨烯水凝胶中制成复合水凝胶,应用于超级电容器的电极材料中具有较好的电容性能. 在冰浴条件下制备有利于聚苯胺形成长链,其复合水凝胶比电容可达390.9 F/g,比普通石墨烯水凝胶提高了近60%.
Abstract:
Recently,graphene nanosheets,as one kind of two-dimensional nano-material with various superior performance,have attracted many attentions. In order to avoid the restacking and gathering of the two-dimensional materials during the application,the researchers have attempted different methods,including formation of hydrogels with three-dimensional structure and preparation of nano-composites. Herein,following these ideas,a graphene hydrogel(GH)is prepared via the π-π interaction,oxygen-containing functional groups or hydrogen bonds between interlayers of graphene oxide(GO). Then polyaniline(PANI)is added after chemical oxidation in situ polymerization in order to prepare a three-dimensional graphene/polyaniline composite hydrogel(GPH)with properties of both graphene and PANI. This hydrogel with good capacitance has been used as electrode materials of supercapacitors. The specific capacitance of GPH reaches 390.9 F/g,which is nearly 60% higher than GH,within ice bath that lengthens the chain of PANI.

参考文献/References:

[1] ZHU Y W,MURALI S,STOLLER M D,et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science,2011,332(6037):1537-1541.
[2]CHEN L F,HUANG Z H,LIANG H W,et al. Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose[J]. Energy & environmental science,2013,6(11):3331-3338.
[3]陈英放,李媛媛,邓梅根. 超级电容器原理及应用[J]. 电子元件与材料,2008,27(4):6-9.
CHEN Y F,LI Y Y,DENG M G. Principles and applications of supercapacitors[J]. Electronic components and materials,2008,27(4):6-9.(in Chinese)
[4]FAN Z J,YAN J,WEI T,et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density[J]. Advanced functional materials,2011,21(12):2366-2375.
[5]PENG T Q,WANG H W,YI H,et al. Co(OH)2 nanosheets coupled with CNT arrays grown on Ni mesh for high-rate asymmetric supercapacitors with excellent capacitive behavior[J]. Electrochimica acta,2015,176:77-85.
[6]杨德志,沈佳妮,杨晓伟,等. 石墨烯基超级电容器研究进展[J]. 储能科学与技术,2014,3(1):1-8.
YANG D Z,SHEN J N,YANG X W,et al. Process in graphene based supercapacitors[J]. Energy storage science and technology,2014,3(1):1-8.(in Chinese)
[7]TEO E Y L,MUNIANDY L,NG E P,et al. High surface area activated carbon from rice husk as a high performance supercapacitor electrode[J]. Electrochimica acta,2016,192:110-119.
[8]XU B,WU F,CHEN R,et al. Highly mesoporous and high surface area carbon:a high capacitance electrode material for EDLCs with various electrolytes[J]. Electrochemistry communications,2008,10(5):795-797.
[9]SIMON P,GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature materials,2008,7(11):845-854.
[10]YE J S,CUI H F,LIU X,et al. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors[J]. Small,2005,1(5):560-565.
[11]ZHU S,ZHANG H,CHEN P,et al. Self-assembled three-dimensional hierarchical graphene hybrid hydrogels with ultrathin β-MnO2 nanobelts for high performance supercapacitors[J]. Journal of materials chemistry A,2014,3(4):1540-1548.
[12]YANG P H,DING Y,LIN Z Y,et al. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes[J]. Nano letters,2014,12(2):731-736.
[13]ZHOU Q Q,LI Y R,HUANG L,et al. Three-dimensional porous graphene/polyaniline composites for high-rate electrochemical capacitors[J]. Journal of materials chemistry A,2014,2(41):17489-17494.
[14]POURBEYRAM S,KHEYRI P. Graphene/polypyrrole nanofiber prepared by simple one step green method for electrochemical supercapacitors[J]. Synthetic metals,2018,238:22-27.
[15]ALABADI A,RAZZAQUE S,DONG Z H,et al. Graphene oxide-polythiophene derivative hybrid nanosheet for enhancing performance of supercapacitor[J]. Journal of power sources,2016,306:241-247.
[16]CHOI B G,YANG M,HONG W H,et al. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities[J]. ACS Nano,2012,6(5):4020-4028.
[17]XIONG P,ZHU J W,WANG X. Recent advances on multi-component hybrid nanostructures for electrochemical capacitors[J]. Journal of power sources,2015,294:31-50.
[18]ZHAO C M,REN F,XUE X X,et al. A high-performance asymmetric supercapacitor based on Co(OH)2/graphene and activated carbon electrodes[J]. Journal of electroanlytical chemistry,2016,782:98-102.
[19]LONG J W,BELANGER D,BROUSSE T,et al. Asymmetric electrochemical capacitors-stretching the limits of aqueous electrolytes[J]. MRS bulletin,2011,36(7):513-522.
[20]JIANG X Q,SETODOI S,FUKUMOTO S,et al. An easy one-step electrosynthesis of graphene/polyaniline composites and electrochemical capacitor[J]. Carbon,2014,67:662-672.
[21]ZHANG Y L,SI L,ZHOU B,et al. Synthesis of novel graphene oxide/pristine graphene/polyaniline ternary composites and application to supercapacitor[J]. Chemical engineering journal,2016,288:689-700.
[22]XU Y Y,SHENG K X,LI C,et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano,2010,4(7):4324-4330.
[23]ZHANG J,ZHOU B,ZHAO B,et al. Flexible three-dimensional graphene hydrogels with superior conductivity and excellent electrochemical performance for supercapacitor electrodes[J]. Chinese journal of chemistry,2017,35(10):1601-1610.
[24]SHANG Y Y,ZHANG J,XU L. Facile synthesis of a graphene/nickel-cobalt hydroxide ternary hydrogel for high-performance supercapacitors[J]. Journal of colloid and interface science,2018,531:593-601.
[25]PARK J H,PARK O O. Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes[J]. Journal of power sources,2002,111(1):185-190.
[26]WEI Y,TANG X,SUN Y,et al. A study of the mechanism of aniline polymerization[J]. Journal of polymer science part A:polymer chemistry,1989,27(7):2385-2396.
[27]牟晶晶. 聚苯胺基电极材料的制备及其在超级电容器中的应用研究[D]. 兰州:西北师范大学,2014.
MOU J J. Preparation of polyaniline-based electrode materials for high-performance supercapacitors[D]. Lanzhou:Northwest Normal University,2014.(in Chinese)
[28]AYAD M M,GEMAEY A H,SALAHUDDIN N,et al. The kinetics and spectral studies of the in situ polyaniline film formation[J]. Journal of colloid and interface science,2003,263(1):196-201.

相似文献/References:

[1]石梦燕,张晓凤,王孝英,等.直接液相剥离法制备无缺陷石墨烯[J].南京师范大学学报(工程技术版),2014,14(02):001.
 Shi Mengyan,Zhang Xiaofeng,Wang Xiaoying,et al.Direct LiquidPhase Exfoliation of Graphite to Produce DefectFree Graphene[J].Journal of Nanjing Normal University(Engineering and Technology),2014,14(03):001.

备注/Memo

备注/Memo:
收稿日期:2019-04-04.
基金项目:国家自然科学基金(20773066)、淮安市生物医药功能材料与分析技术创新服务平台资助项目(HAP201612).
通讯联系人:蒋晓青,教授,博士生导师,研究方向:材料物理化学、纳米电化学. E-mail:jiangxiaoqing@njnu.edu.cn
更新日期/Last Update: 2019-09-30