参考文献/References:
[1] PAPAGEORGIOU C P,OREN M,POGGIO T. A general framework for object detection[C]//Sixth International Conference on Computer Vision. Bombay,India,1998.
[2]LIENHART R,MAYDT J. An extended set of Haar-like features for rapid object detection[C]//International Conference on Image Processing. Rochester,NY,USA,2002.
[3]FREUND Y,SCHAPIRE R E. A desicion-theoretic generalization of on-line learning and an application to boosting[J]. Journal of computer and system sciences,1997,55(1):119-139.
[4]DALAL N,TRIGGS B. Histograms of oriented gradients for human detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego,CA,USA,2005.
[5]SUYKENS J A K,VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural processing letters,1999,9(3):293-300.
[6]LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision,2004,60(2):91-110.
[7]FELZENSZWALB P F,GIRSHICK R B,MCALLESTER D,et al. Object detection with discriminatively trained part based models[J]. IEEE transactions on pattern analysis and machine intelligence,2010,32(9):1627-1645.
[8]GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition. Columbus,OH,USA,2014.
[9]GIRSHICK R. Fast R-CNN[C]//IEEE International Conference on Computer Vision. Santiago,Chile,2015.
[10]REN S,HE K,GIRSHICK R,et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence,2017,39(6):1137-1149.
[11]UIJLINGS J R R,SANDE K E A V D,GEVERS T,et al. Selective search for object recognition[J]. International journal of computer vision,2013,104(2):154-171.
[12]REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,NV,USA,2016.
[13]LIU W,ANGUELOV D,ERHAN D,et al. SSD:single shot MultiBox detector[C]//European Conference on Computer Vision. Amsterdam,Netherlands,2016:21-37.
[14]李天剑,黄斌,刘江玉,等. 卷积神经网络物体检测算法在物流仓库中的应用[J]. 计算机工程,2018,44(6):176-181.
LI T J,HUANG B,LIU J Y,et al. Application of convolution neural network object detection algorithm in logistics warehouse[J]. Computer engineering,2018,44(6):176-181.(in Chinese)
[15]SHEN Z,LIU Z,LI J,et al. DSOD:learning deeply supervised object detectors from scratch[C]//IEEE International Conference on Computer Vision. Venice,Italy,2017.
[16]HUANG G,LIU Z,MAATEN L V D,et al. Densely connected convolutional networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu,Hawaii,USA,2017.
相似文献/References:
[1]曹金梦,倪蓉蓉,杨 彪.面向面部表情识别的双通道卷积神经网络[J].南京师范大学学报(工程技术版),2018,18(03):001.[doi:10.3969/j.issn.1672-1292.2018.03.001]
Cao Jinmeng,Ni Rongrong,Yang Biao.Binary-Channel Convolutional Neural Network forFacial Expression Recognition[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(04):001.[doi:10.3969/j.issn.1672-1292.2018.03.001]
[2]陈 扬,曾 诚,程 成,等.一种基于CNN的足迹图像检索与匹配方法[J].南京师范大学学报(工程技术版),2018,18(03):039.[doi:10.3969/j.issn.1672-1292.2018.03.006]
Chen Yang,Zeng Cheng,Cheng Cheng,et al.A CNN-based Approach to Footprint Image Retrieval and Matching[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(04):039.[doi:10.3969/j.issn.1672-1292.2018.03.006]
[3]成 杰,叶文武,徐寅林.回转库档案实时定位中基于鱼眼镜头图像的处理识别技术[J].南京师范大学学报(工程技术版),2019,19(02):075.[doi:10.3969/j.issn.1672-1292.2019.02.010]
Cheng Jie,Ye Wenwu,Xu Yinlin.Processing and Recognition Technology Based on Fisheye Lens Image in Real-Time Positioning of Rotary Library Files[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(04):075.[doi:10.3969/j.issn.1672-1292.2019.02.010]
[4]任媛媛,张显峰,马永建,等.基于卷积神经网络的无人机遥感影像农村建筑物目标检测[J].南京师范大学学报(工程技术版),2019,19(03):029.[doi:10.3969/j.issn.1672-1292.2019.03.005]
Ren Yuanyuan,Zhang Xianfeng,Ma Yongjian,et al.Target Detection of Rural Buildings in UAV Remote Sensing ImagesBased on Convolutional Neural Network[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(04):029.[doi:10.3969/j.issn.1672-1292.2019.03.005]
[5]许博鸣,刘晓峰,业巧林,等.基于卷积神经网络面向自然场景建筑物识别技术的移动端应用[J].南京师范大学学报(工程技术版),2019,19(03):037.[doi:10.3969/j.issn.1672-1292.2019.03.006]
Xu Boming,Liu Xiaofeng,Ye Qiaolin,et al.A Convolutional Neural Network Based on Mobile Application forIdentification of Buildings in Natural Scene[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(04):037.[doi:10.3969/j.issn.1672-1292.2019.03.006]
[6]梁秦嘉,刘 怀,陆 飞.基于改进YOLOv3模型的交通视频目标检测算法研究[J].南京师范大学学报(工程技术版),2021,21(02):047.[doi:10.3969/j.issn.1672-1292.2021.02.008]
Liang Qinjia,Liu Huai,Lu Fei.Traffic Video Target Detection Algorithm Based on Improved YOLOv3[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(04):047.[doi:10.3969/j.issn.1672-1292.2021.02.008]
[7]梁秦嘉,刘 怀,陆 飞.基于改进YOLOv3的运动目标分类检测算法研究[J].南京师范大学学报(工程技术版),2021,21(04):027.[doi:10.3969/j.issn.1672-1292.2021.04.005]
Liang Qinjia,Liu Huai,Lu Fei.Moving Target Classification and Detection AlgorithmBased on Improved YOLOv3[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(04):027.[doi:10.3969/j.issn.1672-1292.2021.04.005]
[8]尚文倩,曹 原.FastGR:一种基于神经协同过滤的群组推荐算法[J].南京师范大学学报(工程技术版),2022,22(02):029.[doi:10.3969/j.issn.1672-1292.2022.02.005]
Shang Wenqian,Cao Yuan.FastGR:A Group Recommendation Algorithm Based on Neural Collaborative Filtering[J].Journal of Nanjing Normal University(Engineering and Technology),2022,22(04):029.[doi:10.3969/j.issn.1672-1292.2022.02.005]
[9]韩天翊,林荣恒.一种基于决策层融合的多模态情感识别方法[J].南京师范大学学报(工程技术版),2022,22(02):035.[doi:10.3969/j.issn.1672-1292.2022.02.006]
Han Tianyi,Lin Rongheng.A Multimodal Emotion Recognition Method Based on Decision Level Fusion[J].Journal of Nanjing Normal University(Engineering and Technology),2022,22(04):035.[doi:10.3969/j.issn.1672-1292.2022.02.006]
[10]张宇苏,吴小俊,李 辉,等.基于无监督深度学习的红外图像与可见光图像融合算法[J].南京师范大学学报(工程技术版),2023,23(01):001.[doi:10.3969/j.issn.1672-1292.2023.01.001]
Zhang Yusu,Wu Xiaojun,Li Hui,et al.Infrared Image and Visible Image Fusion Algorithm Based on Unsupervised Deep Learning[J].Journal of Nanjing Normal University(Engineering and Technology),2023,23(04):001.[doi:10.3969/j.issn.1672-1292.2023.01.001]