[1]钱子伟,孙毅超,王 琦,等.基于OS-ELM的光伏发电中长期功率预测[J].南京师范大学学报(工程技术版),2020,20(01):008-14.[doi:10.3969/j.issn.1672-1292.2020.01.002]
 Qian Ziwei,Sun Yichao,Wang Qi,et al.Medium and Long Term Photovoltaic Power GenerationForecasting Based on OS-ELM[J].Journal of Nanjing Normal University(Engineering and Technology),2020,20(01):008-14.[doi:10.3969/j.issn.1672-1292.2020.01.002]
点击复制

基于OS-ELM的光伏发电中长期功率预测
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
20卷
期数:
2020年01期
页码:
008-14
栏目:
电气工程
出版日期:
2020-03-15

文章信息/Info

Title:
Medium and Long Term Photovoltaic Power GenerationForecasting Based on OS-ELM
文章编号:
1672-1292(2020)01-0008-07
作者:
钱子伟12孙毅超12王 琦12季顺祥12周 敏12曾柏琛12
(1.南京师范大学南瑞电气与自动化学院,江苏 南京 210023)(2.南京师范大学江苏省电气互联综合能源工程实验室,江苏 南京 210023)
Author(s):
Qian Ziwei12Sun Yichao12Wang Qi12Ji Shunxiang12Zhou Min12Zeng Baichen12
(1.School of NARI Electrical and Automation,Nanjing Normal University,Nanjing 210023,China)(2.Jiangsu Key Laboratory of Gas and Electricity Interconnection Integrated Energy,Nanjing Normal University,Nanjing 210023,China)
关键词:
光伏预测相关性分析在线序列极限学习机数据更新
Keywords:
photovoltaic forecastingcorrelation analysisonline sequential extreme learning machine(OS-ELM)data update
分类号:
TM615
DOI:
10.3969/j.issn.1672-1292.2020.01.002
文献标志码:
A
摘要:
为了进一步提高光伏出力预测的精度,提出了一种基于在线序列极限学习机的光伏发电中长期功率预测方法. 结合在线序列极限学习机学习速度快、泛化能力强的特点,通过对大量气象数据和历史发电数据综合处理,对光伏发电系统的输出功率进行预测. 同时,由于实时数据的不断输入,该方法能够对预测模型进行在线更新. 算例仿真研究表明,该预测方法与反向传播神经网络、支持向量机方法相比,能够有效提高预测精度,满足在线应用的需求,具有较好的应用前景.
Abstract:
In order to further improve the accuracy of PV output prediction,a medium and long term power prediction method based on online sequential extreme learning machine(OS-ELM)is proposed. Combined with the characteristics of fast learning and generalization ability of OS-ELM,the output power of photovoltaic power generation system is predicted by comprehensively processing a large number of meteorological data and historical power generation data. At the same time,due to the continuous input of real-time data,the method can update the prediction model online. The simulation study shows that compared with the back propagation(BP)neural network and support vector machine(SVM)method,the predictional method can effectively improve the prediction accuracy and meet the needs of online applications,and it has a good application prospect.

参考文献/References:

[1] 丁明,刘志,毕锐,等. 基于灰色系统校正——小波神经网络的光伏功率预测[J]. 电网技术,2015,39(9):2438-2443.
[2]李卫良,黄堃,陈璐,等. 采用可控负荷平滑光伏发电功率波动的需求响应策略[J]. 江苏电机工程,2014,33(2):40-43.
[3]曹煜祺,张立梅. 光伏发电功率预测方法综述[J]. 黑龙江科学,2017,8(21):31-33.
[4]AMINMOHAMMAD S,HIZAM H,RADZI M A M,et al. Modelling and prediction of photovoltaic power output using artificial neural networks[J]. International Journal of Photoenergy,2014(5):1-10.
[5]YONA A,SENJYU T,FUNABASHI T,et al. Determination method of insolation prediction with fuzzy and applying neural network for long-term ahead pv power output correction[J]. IEEE Transactions on Sustainable Energy,2013,4(2):527-533.
[6]卢静,翟海清,冯双磊,等. 光伏发电功率预测方法的探索[J]. 华东电力,2013,41(2):380-384.
[7]李乐,刘天琪. 基于近邻传播聚类和回声状态网络的光伏预测[J]. 电力自动化设备,2016,36(7):41-46.
[8]李建文,焦衡,刘凤梧,等. 基于相似时段的分时段光伏出力短期预测[J]. 电力自动化设备,2018,38(8):183-188.
[9]王继拓,王万成,陈宏伟. 基于回归——马尔科夫链的光伏发电功率预测[J]. 电测与仪表,2019,56(1):76-81.
[10]季顺祥,王琦,姚阳,等. 基于相似日和交叉熵理论的光伏发电功率组合预测[J]. 南京师范大学学报(工程技术版),2018,18(2):19-28.
[11]张程熠,唐雅洁,李永杰,等. 适用于小样本的神经网络光伏预测方法[J]. 电力自动化设备,2017,37(1):101-106,111.
[12]茆美琴,龚文剑,张榴晨,等. 基于EEMD-SVM方法的光伏电站短期出力预测[J]. 中国电机工程学报,2013,33(34):17-24.
[13]陈通,孙国强,卫志农,等. 基于相似日和CAPSO-SNN的光伏发电功率预测[J]. 电力自动化设备,2017,37(3):66-71.
[14]康重庆,夏清,刘梅. 电力系统负荷预测[M]. 北京:中国电力出版社,2017.
[15]王焱,汪震,黄民翔,等. 基于OS-ELM和Bootstrap方法的超短期风电功率预测[J]. 电力系统自动化,2014,38(6):14-19.

备注/Memo

备注/Memo:
收稿日期:2019-03-18.
基金项目:江苏省研究生科研与实践创新计划项目(SJCX19_0386).
通讯作者:孙毅超,博士,讲师,研究方向:电力电子技术及其在电力系统中的应用. E-mail:yichao.sun1987@gmail.com
更新日期/Last Update: 2020-03-15