参考文献/References:
[1] 石茜,杜博,张良培. 一种基于局部判别正切空间排列的高光谱遥感影像降维方法[J]. 测绘学报,2012,41(3):417-420.
[2]孙伟伟. 基于流形学习的高光谱影像降维理论与方法研究[J]. 测绘学报,2014,43(4):439.
[3]SU J Y,YI D W,LIU C J,et al. Dimension reduction aided hyperspectral image classification with a small-sized training dataset:experimental comparisons[J]. Sensors,2017,17(12):2726.
[4]WRIGHT J,GANESH A,RAO S,et al. Robust principal component analysis:exact recovery of corrupted low-rank matrices via convex optimization[C]//Advances in Neural Information Processing Systems. Vancouver,Canada:NIPS200,2009:2080-2088.
[5]LIN B,TAO G,KAI D. Using non-negative matrix factorization with projected gradient for hyperspectral images feature extraction[C]//2013 8th IEEE Conference on Industrial Electronics and Applications(ICIEA). Melbourne,Australia:IEEE,2013:516-519.
[6]施蓓琦,刘春,孙伟伟,等. 应用稀疏非负矩阵分解聚类实现高光谱影像波段的优化选择[J]. 测绘学报,2013,42(3):351-358,366.
[7]CAI J F,CANDèS E J,SHEN Z. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization,2010,20(4):1956-1982.
[8]CANDèS E,LI X,MA Y,et al. Robust principal component analysis?[J]. Journal of the ACM,2011,58(3):1-37.
[9]SINGHAL V,AGGARWAL H K,TARIYAL S,et al. Discriminative robust deep dictionary learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,55(9):5274-5283.
[10]TOSIC I,FROSSARD P. Dictionary learning[J]. IEEE Signal Processing Magazine,2011,28(2):27-38.
[11]SHEN H,HUANG J Z. Sparse principal component analysis via regularized low rank matrix approximation[J]. Journal of Multivariate Analysis,2008,99(6):1015-1034.
[12]SHEN Y,WEN Z,ZHANG Y. Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization[J]. Optimization Methods and Software,2014,29(2):239-263.
[13]CAI D,HE X,HAN J,et al. Graph regularized nonnegative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1548-1560.
[14]KANG X,LI S,BENEDIKTSSON J. Spectral-spatial hyperspectral image classification with edge-preserving filtering[J]. IEEE Transactions on Geoscience and Remote Sensing,2014,52(5):2666-2677.
[15]REN Y,ZHANG Y,WEI W,et al. A spectral-spatial hyperspectral data classification approach using random forest with label constraints[C]//2014 IEEE Workshop on Electronics,Computer and Applications. Ottawa,Canada:IEEE,2014:344-347.
[16]SUN L,WU Z,LIU J,et al. Supervised spectral-spatial hyperspectral image classification with weighted Markov random fields[J]. IEEE Transactions on Geoscience and Remote Sensing,2015,53(3):1490-1503.
[17]LONG Z,DU Q,YOUNAN N. Hyperspectral feature extraction using contourlet transform[C]//2012 IAPR Workshop on Pattern Recognition in Remote Sensing(PRRS). Tsukuba Science City,Japan:IEEE,2012:1-4.
[18]RASTI B,SVEINSSON J,ULFARSSON M. Total variation based hyperspectral feature extraction[C]//Geoscience & Remote Sensing Symposium. Quebec City,Canada:IEEE,2014:4644-4647.
[19]李亚标,王宝光,李温温. 基于小波变换的图像纹理特征提取方法及其应用[J]. 传感技术学报,2009,22(9):1308-1311.
[20]赵莹,高隽,陈果,等. 一种基于分形理论的多尺度多方向纹理特征提取方法[J]. 仪器仪表学报,2008,29(4):787-791.
[21]POGGI G,SCARPA G,ZERUBIA J B. Supervised segmentation of remote sensing images based on a tree-structured MRF model[J]. IEEE Transactions on Geoscience & Remote Sensing,2005,43(8):1901-1911.
[22]JACKSON Q,LANDGREBE D A. Adaptive bayesian contextual classification based on markov random field[J]. IEEE Transactions on Geoscience & Remote Sensing,2002,40(11):2454-2463.
[23]LI W,CHEN C,SU H,et al. Local binary patterns and extreme learning machine for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience & Remote Sensing,2015,53(7):3681-3693.
[24]SU H,SHENG Y,DU P,et al. Hyperspectral image classification based on volumetric texture and dimensionality reduction[J]. Frontiers of Earth Science,2015,9(2):225-236.
[25]TSAI F,LAI J S. Feature extraction of hyperspectral image cubes using three-dimensional gray-level cooccurrence[J]. IEEE Transactions on Geoscience & Remote Sensing,2013,51(6):3504-3513.
[26]FAUVEL M,BENEDIKTSSON J,CHANUSSOT J,et al. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles[J]. IEEE Transactions on Geoscience and Remote Sensing,2008,46(11):3804-3814.
[27]BENEDIKTSSON J,PALMASON J,SVEINSSON J. Classification of hyperspectral data from urban areas based on extended morphological profiles[J]. IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):480-491.
[28]BREIMAN L. Random forests[J]. Machine Learning,2001,45(1):5-32.
[29]FRIEDMAN J H. Greedy function approximation:a gradient boosting machine[J]. Annals of Statistics,2001,29(5):1189-1232.