参考文献/References:
[1] STANDARD & POOR’S. General criteria:principles of credit ratings[EB/OL].(2011-02-16). http://www.standardandpoors.com/prot/ratings/articles/en/us/?articleType=HTML&assetID=1245366284668.
[2]MOODY’S. Global business & consumer service industry rating methodology[EB/OL].(2013-10-13). https://www.moodys.com/researchdocumentcontentpage.aspx?docid=PBC_127102.
[3]MOODY’S. Global retail industry[EB/OL].(2011-06-30). https://www.moodys.com/researchdocumentcontentpage.aspx?docid=PBC_133476.
[4]MOODY’S. Global software industry[EB/OL].(2012-10-09). https://www.moodys.com/researchdocumentcontentpage.aspx?docid=PBC_142367.
[5]王丽英. 关于印发《中国建设银行小企业客户债信评级办法》的通知:建总发[2009]101号[R]. 北京:中国建设银行,2009.
[6]赵亚,李田,苑泽明. 基于随机森林的企业信用风险评估模型研究[J]. 财会通讯,2017(29):110-114.
[7]曹裕,陈霞,刘小静. 违约距离视角下的开发性金融信用风险评估[J]. 财经理论与实践,2017,38(209):14-19.
[8]王海峰,张晓妮,石宝峰. 基于模糊聚类的 P2P 网贷个人信用评估模型及应用[J]. 浙江金融,2017(10):19-26.
[9]王克敏,罗艳梅. 中国上市公司对外担保与财务困境研究[J]. 吉林大学社会科学学报,2006,46(5):106-113.
[10]王楚萱,陶宝山,吴晨. 对外担保会影响商业信用融资吗?[J]. 财会通讯,2018(18):118-122.
[11]付永贵,朱建明. 基于大数据的网络供应商信用评估模型[J]. 中央财经大学学报,2016(8):74-83.
[12]王凯,黄世祥. 行业内中小企业信用评估模型及应用[J]. 数学的实践与认识,2008,38(4):64-77.
[13]NIKOLIC N,ZARKIC J N,STOJANOVSKI D,et al. The application of brute force logistic regression to corporate credit scoring models:evidence from Serbian financial statement[J]. Expert Systems with Applications,2013,40(15):5932-5944.
[14]陈永明,周龙,李双红. 基 AHP和DEMATEL方法的农户信用评级研究[J]. 征信,2012(5):20-24.
[15]GUO W,TONG K N,SHAO H Y,et al. Small and medium-sized enterprises multi-service agent credit rating system construction under cloud manufacturing mode based on RS and AHP[J]. Computer Integrated Manufacturing Systems,2013,19(9):2340-2347.
[16]CHEN W,GAO M,YANG Y. Dynamic credit supervision system of agent construction in public investment project and process design[J]. Advanced Management Science,2013,22(1-2):12.
[17]刘骅,张婕. 互联网金融信用风险预警与审计治理策略研究:以江苏省P2P网贷平台为例[J]. 南京财经大学学报,2017(4):59-66.
[18]陈晓红,杨志慧. 基于改进模糊综合评价法的信用评估体系研究[J]. 中国管理科学,2015,23(1):146-153.
[19]刘京礼,李建平,徐伟宣,等. 信用评估中的鲁棒赋权自适应Lp最小二乘支持向量机方法[J]. 中国管理科学,2010,18(5):28-33.
[20]邵蔚. 对P2P平台信用风险的评估与预测:基于决策树模型[J]. 北方经贸,2017(9):103-104.
[21]郑杰. 基于随机森林模型的P2P借款人信用评估研究[D]. 哈尔滨:哈尔滨工业大学,2017.
[22]ODOM M D,SHARDA R. A neural network model for bankruptcy prediction[C]//IJCNN International Joint Conference on Neural Networks. Diego,USA:Browman C P,Goldstein L,1990:163-168.
[23]叶夏菁. 基于BP神经网络与半监督学习的网贷平台信用评估模型[D]. 浙江大学,2015.
[24]孙庆文,张琼琼,仇静莉,等. 基于不同信息获取量的赊销决策风险度判别模型[J]. 系统工程理论与实践,2012,32(1):41-48.
[25]BAESENS B,GESTEL V T,VIAENE S. Benchmarking state-of-art classification algorithms for credit scoring[J]. Journal of the Operation Research Society,2003,54(6):627-635.
[26]ZHANG Q,WANG J,LU A G. An improved SMO algorithm for financial credit risk assessment-evidence from China’s banking[J]. Neurocomputing,2018,272:314-325.
[27]肖斌卿,柏巍,姚瑶,等. 基于LS-SVM的小微企业信用评估研究[J]. 审计与经济研究,2016,31(6):102-111.
[28]赵亚,李田,苑泽明. 基于随机森林的企业信用风险评估模型研究[J]. 财会通讯,2017(29):110-114.
[29]PALEOLOGO G,ELISSEEFF A,ANTONINI G. Subagging for credit scoring models[J]. European Journal of Operational Research,2010,201(2):490-499.
[30]肖进,薛书田,黄静,等. 客户信用评估半监督协同训练模型研究[J]. 中国管理科学,2016,24(6):124-130.
[31]黄静,薛书田,肖进. 基于半监督学习的客户信用评估集成模型研究[J]. 软科学,2017,31(7):131-134.
[32]LEGEN D. AUC越大,正确率就越高?[EB/OL].(2018-01-15). https://blog.csdn.net/legendavid/article/details/79063044.