[1]王玉蓉,张海龙,王恩荣.基于Kalman滤波和LQG控制的主动悬架系统容错控制研究[J].南京师范大学学报(工程技术版),2020,20(04):030-36.[doi:10.3969/j.issn.1672-1292.2020.04.005]
 Wang Yurong,Zhang Hailong,Wang Enrong.Research on Fault Tolerant Control of Active Suspension SystemBased on Kalman Filtering and LQG Control Algorithm[J].Journal of Nanjing Normal University(Engineering and Technology),2020,20(04):030-36.[doi:10.3969/j.issn.1672-1292.2020.04.005]
点击复制

基于Kalman滤波和LQG控制的主动悬架系统容错控制研究
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
20卷
期数:
2020年04期
页码:
030-36
栏目:
电气工程
出版日期:
2020-12-15

文章信息/Info

Title:
Research on Fault Tolerant Control of Active Suspension SystemBased on Kalman Filtering and LQG Control Algorithm
文章编号:
1672-1292(2020)04-0030-07
作者:
王玉蓉张海龙王恩荣
南京师范大学南瑞电气与自动化学院,江苏 南京 210023
Author(s):
Wang YurongZhang HailongWang Enrong
NARI School of Electrical and Automation Engineering,Nangjing Normal University,Nangjing 210023,China
关键词:
主动悬架LQG控制器Kalman滤波容错控制
Keywords:
active suspensionLQG controllerKalman filterfault-tolerant control
分类号:
U463.33
DOI:
10.3969/j.issn.1672-1292.2020.04.005
文献标志码:
A
摘要:
传感器掺杂噪声信号是主动悬架系统运行过程中常见的一种故障. 针对二自由度车辆主动悬架系统加速度传感器发生故障的情况,基于最优控制理论和卡尔曼滤波算法,设计了线性高斯二次型(linear quadratic Gaussian,LQG)控制器,分别在谐波激励、冲击性和实测路面谱激励下,进行综合悬架性能仿真分析. 结果表明,与无容错情况相比,故障状态下采用容错控制后的簧载与非簧载质量传输率、悬架动行程传输率均大幅减小,有效提升了驾乘舒适性,同时轮胎动载荷传输率显著增大,确保了安全性,整体可近似恢复到无故障时的主动悬架性能.
Abstract:
Sensor-doped noise signal is a kind of fault that will occur during the operation of active suspension system. Aiming at the failure of the acceleration sensor of the two-degree-of-freedom vehicle active suspension system,this paper designs a linear quadratic Gaussian(LQG)controller based on the optimal control theory and Kalman filter algorithm. Under the excitation of impact and measured road surface spectrum,a comprehensive suspension performance simulation analysis is carried out. The results show that compared with the non-fault-tolerant situation,the sprung and unsprung mass transmission rate and the suspension dynamic stroke transmission rate after the fault-tolerant control are adopted in the fault state are greatly reduced,which effectively improves the driving comfort and the tire dynamics. The load transmission rate has been significantly increased to ensure safety,and the overall performance of the active suspension can be approximately restored to that in a failure-free condition.

参考文献/References:

[1] 兰京. 基于LQG最优调节器理论的车辆悬架分析及仿真[J]. 科技创新与应用,2019,8(10):19-21.
[2]来飞,胡博. 汽车主动悬架技术的研究现状[J]. 南京理工大学学报,2019,43(4):518-526.
[3]杨柳青,陈无畏. 基于传感器信号重构的汽车主动悬架主动容错控制[J]. 汽车工程,2013,35(12):1084-1091.
[4]陈双,钟孝伟. 汽车主动悬架作动器故障诊断与控制补偿方法[J]. 汽车技术,2018(2):40-44.
[5]张袅娜,付留杰,徐才茂,等. 基于未知输入观测器的悬架故障诊断[J]. 长春工业大学学报,2017:313-321.
[6]ZHANG Z L,XIAO B X. Sensor fault diagnosis and fault tolerant control for forklift based on sliding mode theory[J/OL]. IEEE Access,2020:2991188[2020-12-10]. https://ieeexplore.ieee.org/document/9081962.
[7]LIN B,SU X Y. Fault-tolerant controller design for active suspension system with proportional differential sliding mode observer[J]. International Journal of Control,Automation,and Systems,2019,17(7):1751-1761.
[8]周长城. 汽车平顺性与悬架系统设计[M]. 北京:机械工业出版社,2011:211-213.
[9]钟孝伟,陈双,张不扬. 基于卡尔曼滤波算法的车辆振动状态估计与最优控制研究[J]. 汽车技术,2017(5):14-18.
[10]刘剑. 车辆馈能悬架直线电机结构参数优化设计[D]. 南京:南京师范大学,2019.
[11]ZHANG H L,WANG E R,ZHANG N. Semi-active sliding mode control of vehicle suspension with magneto-rheological damper[J]. Chinese Journal of Mechanical Engineering,2015,28(1):63-75.
[12]兰波,喻凡,刘娇蛟. 主动悬架LQG控制器设计[J]. 系统仿真学报,2003,15(1):138-140,153.
[13]张志达. 1/4车辆主动悬架LQG控制仿真分析[J]. 汽车实用技术,2017,23(21):171-174.
[14]LI H,TANG C Y,ZHANG T X. Controller of vehicle active suspension systems using LQG method[C]//Automation and Logistics. Qingdao:IEEE ICAL,2008:401-404.
[15]钟孝伟. 汽车半主动悬架作动器故障诊断与容错控制方法研究[D]. 辽宁:辽宁工业大学,2018.
[16]谢伟,赵波,蒋培露. 基于遗传算法的主动悬架最优控制研究[J]. 农业装备与车辆工程,2019,57(8):78-81.
[17]陈英. 车辆悬架系统的LQG控制器设计[D]. 西安:西安理工大学,2017.

备注/Memo

备注/Memo:
收稿日期:2020-07-24.
基金项目:国家自然科学基金项目(51475246)、江苏省自然科学基金青年项目(BK20171039).
通讯作者:张海龙,博士,副教授,研究方向:磁流变智能减振及电磁馈能技术研究. E-mail:61204@njnu.edu.cn
更新日期/Last Update: 2020-12-15