参考文献/References:
[1] BIKEL D M,SCHWARTA R,WEISCHEDEL R M. An algorithm that learns what’s in a name[J]. Machine Learning,1999,34(1/2/3):211-231.
[2]LIAO W H,VEERAMACHANENI S. A simple semi-supervised algorithm for named entity recognition[C]//The Proceedings of NAACL HLT 2009. Boulder,USA:ASL,2009:58-65.
[3]RATINOV L,ROTH D. Design challenges and misconceptions in named entity recognition[C]//Proceedings of the Thirteenth Conference on Computational Natural Language Learning(CoNLL-2009). Boulder,USA:ASL,2009:147-155.
[4]TSAI T H,WU S H,LEE C W,et al. Mencius:a Chinese named entity recognizer using the maximum entropy-based hybrid model[J]. International Journal of Computational Linguistics and Chinese Language Processing,2004,9(1):65-82.
[5]陈钰枫,宗成庆,苏克毅. 汉英双语命名实体识别与对齐的交互式方法[J]. 计算机学报,2011,34(9):1688-1696.
[6]张海楠,伍大勇,刘悦,等. 基于深度神经网络的中文命名实体识别[J]. 中文信息学报,2017,31(4):28-35.
[7]杨锦锋,关毅,何彬,等. 中文电子病历命名实体和实体关系语料库构建[J]. 软件学报,2016,27(11):2725-2746.
[8]YOUNG T,HAZARIKA D,PORIA S,et al. Recent trends in deep learning based natural language processing[J]. IEEE Computational Intelligence Magazine,2018,13(3):55-75.
[9]ASAHARA M,MATSUMOTO Y. Japanese named entity extraction with redundant morphological analysis[C]//Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology. Association for Computational Linguistics. Sapporo,Japan:ACL,2003:8-15.
[10]CHEN A,PENG F,SHAN R,et al. Chinese named entity recognition with conditional probabilistic models[C]//Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing. Sydney,Australia:ACL,2006:173-176.
[11]CHEN Y,ZHOU C J,LI T X,et al. Named entity recognition from Chinese adverse drug event reports with lexical feature based BiLSTM-CRF and tri-training[J]. Journal of Biomedical Informatics,2019,96:103252.
[12]HUANG Z H,XU W,YU K. Bidirectional LSTM-CRF models for sequence tagging[C]//ACL. Beijing,China:ACL,2015:13-16.
[13]STRUBELL E,VERGA P,BELANGER D,et al. Fast and accurate entity recognition with iterated dilated convolutions[C]//EMNLP. Copenhagen,Denmark:ACL,2017:2670-2680.
[14]LIU K X,HU Q C,LIU J W. Named entity recognition in Chinese electronic medical records based on CRF[C]//2017 14th Web Information Systems and Applications Conference(WISA). Jeju,Korea:IEEE,2017:105-110.
[15]LIU Z J,YANG M,WANG X L,et al. Entity recognition from clinical texts via recurrent neural network[J]. BMC Medical Informatics and Decision Making,2017,17:53-61.
[16]QIU J,QI W,ZHOU Y,et al. Fast and accurate recognition of Chinese clinical named entities with residual dilated convolutions[C]//2018 IEEE International Conference on Bioinformatics and Biomedicine(BIBM). Madrid,Spain:IEEE,2018:935-942.
[17]PETERS M E,NEUMANN M,IYYER M,et al. Deep contextualized word representations[C]//Proceedings of NAACL-HLT. New Orleans,USA:ACL,2018:2227-2237.
[18]DEVLIN J,CHANG M W,LEE K,et al. BERT:pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Minneapolis,USA:ACL,2019:278-286.
[19]LAN Z,CHEN M,GOODMAN S,et al. ALBERT:a lite BERT for self-supervised learning of language representations[C]//International Conference on Learning Representations. New Orleans,USA:Elsevier,2019:12-17.
[20]HOCHREITER S,SCHMIDHUBER J. Long short-termmemory[J]. Neural Computation,1997,9(8):1735-1780.
[21]LAMPLE G,BALLESTEROS M,SUBRAMANIAN S,et al. Neural architectures for named entity recognition[C]//NAACL-HLT. San Diego,USA:ACL,2016:260-270.
[22]LUO L,YANG Z,YANG P,et al. An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition[J]. Bioinformatics,2018,34(8):1381-1388.
[23]VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]//Advances in Neural Information Processing Systems. Long Beach,USA:NeurIPS,2017:6000-6010.