参考文献/References:
[1] KONG Y,FU Y. Human action recognition and prediction:a survey[EB/OL]. [2020-05-21]. https://arxiv.org/abs/1806.11230.
[2]WANG H,KLASER A,SCHMID C,et al. Action recognition by dense trajectories[C]//2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs,USA,2011.
[3]WANG H,SCHMID C. Action recognition with improved trajectories[C]//Proceedings of the IEEE international conference on computer vision. Sydney,Australia,2013.
[4]TRAN D,BOURDEV L,FERGUS R,et al. Learning spatio-temporal features with 3D convolutional networks[EB/OL]. [2020-05-20]. https://arxiv.org/abs/1412.0767.
[5]SIMONYAN K,ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]//Advances in Neural Information Processing Systems. Montréal,Canada,2014.
[6]SRIVASTAVA N,MANSIMOV E,SALAKHUTDINOV R. Unsupervised learning of video representations using LSTMs[EB/OL]. [2020-06-11]. https://arxiv.org/abs/1502.04681v3.
[7]FRANCISCO O,DANIEL R. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition[J]. Sensors,2016,16(1):115-140.
[8]罗会兰,童康,孔繁胜. 基于深度学习的视频中人体动作识别进展综述[J]. 电子学报,2019,47(5):1162-1173.
[9]ZHANG H B,ZHANG Y X,ZHONG B,et al. A comprehensive survey of vision-based human action recognition methods[J]. Sensors,2019,19(5):105-120.
[10]FEICHTENHOFER C,PINZ A,ZISSERMAN A. Convolutional two-stream network fusion for video action recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,USA,2016.
[11]SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2015-05-20]. https://arxiv.org/abs/1409.1556.
[12]WANG L,XIONG Y,WANG Z,et al. Temporal segment networks:towards good practices for deep action recognition[C]//European Conference on Computer Vision. Cham:Springer,2016.
[13]张聪聪,何宁. 基于关键帧的双流卷积网络的人体动作识别方法[J]. 南京信息工程大学学报(自然科学版),2019,64(6):96-101.
[14]JI S W,XU W,YANG M,et al. 3D convolutional neuralnetworks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(1):221-231.
[15]NG Y H,HAUSKNECHT M,VIJAYANARASIMHAN S,et al. Beyond short snippets:deep networks for video classification[EB/OL]. [2020-05-21]. https://arxiv.org/abs/1503.08909.
[16]SHI X,CHEN Z,WANG H,et al. Convolutional LSTM network:a machine learning approach for precipitation nowcasting[C]//Advances in Neural Information Processing Systems. Montreal,Quebec,Canada,2015.
[17]HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,USA,2016.
[18]REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(2):142-158.
[19]WOO S,PARK J,LEE J Y,et al. CBAM:convolutional block attention module[C]//European Conference on Computer Vision. Munich,Germany,2018.