参考文献/References:
[1] HAMADA H,PETRINO M G,KAKUNAGA T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes[J]. Proceedings of the National Academy of Sciences of the United States of America,1982,79(7):6465-6469.
[2]TAUTZ D. Hypervariability of simple sequences as a general source for polymorphic DNA markers[J]. Nucleic Acids Research,1989,17(16):6463-6471.
[3]杨纪青,袁磊,陈洪萍. 烟草丛顶病毒完整基因组上微卫星分布[J]. 湖北农业科学,2011,50(3):603-605.
[4]乔麦菊,冉江洪,张和民. 微卫星标记在大熊猫研究中的应用进展[J]. 兽类学报,2019,39(1):103-110.
[5]刘旭,丁由中. 分子生物学技术应用于野生动物保护及扩散研究概况[J]. 野生动物学报,2019,40(2):497-501.
[6]王丰,张猛,沈玉帮,等. 青鱼微卫星标记的开发与特性分析[J]. 动物学杂志,2019,54(1):57-65.
[7]沙航,罗相忠,邹桂伟,等. 长江中游鳙群体的微卫星遗传多样性分析[J]. 淡水渔业,2020,50(4):12-17.
[8]田玉苗,盛清宇,袁立成,等. 长白山北部西伯利亚狍局域种群间的基因流[J]. 野生动物学报,2020,41(3):551-559.
[9]阮惠婷,徐姗楠,李敏,等. 飘鱼微卫星位点的筛选及珠江流域5个地理群体的遗传多样性分析[J]. 水生生物学报,2020,44(3):501-508.
[10]商鹏,郭新颖,张健,等. 藏马微卫星标记遗传多样性研究[J]. 中国农业大学学报,2019,24(9):98-104.
[11]黄承勤,黄英毅,黄欣,等. 湖栖鳍虾虎鱼微卫星DNA标记的开发与群体遗传多样性分析[J]. 动物学杂志,2020,55(1):61-76.
[12]王豆,许冠,王洪永,等. 中国圈养林麝微卫星DNA多样性研究[J]. 兽类学报,2019,39(6):599-607.
[13]朱克诚,宋岭,刘宝锁,等. 黄鳍棘鲷家系亲缘关系鉴定[J]. 水产学报,2020,44(3):351-357.
[14]袁耀华,耿广耀,杨淑慧,等. 非洲企鹅微卫星DNA的筛选及其遗传多样性分析[J]. 野生动物学报,2019,40(3):664-669.
[15]FAO-FIES. Aquatic sciences and fisheries information system(ASFIS)species list[EB/OL]. [2020-08-13]. htttps://www.fao.org/fishery/collection/asfis/en.
[16]ZHOU T,LI N,JIN Y L,et al. Chemokine C-C motif ligand 33 is a key regulator of teleost fish barbel development[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(22):5018-5027.
[17]徐杰杰,郑翔,李杰,等. 黄颡鱼(Pelteobagrus fulvidraco)全基因组微卫星分布特征研究[J]. 基因组学与应用生物学,2020,39(12):5488-5498.
[18]徐杰杰,郑翔,张鑫宇,等. 4种河鲀全基因组微卫星分布特征分析研究[J/OL]. 基因组学与应用生物学:1-11[2020-08-13]. http://kns.cnki.net/kcms/detail/45.1369.q.20191126.1019.002.html.
[19]崔建洲,申雪艳,杨官品,等. 红鳍东方鲀基因组微卫星特征分析[J]. 中国海洋大学学报(自然科学版),2006,36(2):249-254,272.
[20]SUBRAMANIAN S,MISHRA R K,SINGH L. Genome-wide analysis of microsatellite repeats in humans:their abundance and density in specific genomic regions[J]. Genome Biology,2003,4(2):R13.
[21]涂飞云,刘俊,韩卫杰,等. 食蟹猴全基因组微卫星分布特征分析[J]. 野生动物学报,2018,39(2):400-404.
[22]黄杰,刘磊,杨波,等. 普通鸬鹚基因组微卫星分布规律研究[J]. 野生动物学报,2020,41(1):108-114.
[23]黄杰,杜联明,李玉芝,等. 红原鸡全基因组中微卫星分布规律研究[J]. 四川动物,2012,31(3):358-363.
[24]甘丽萍,田辉,唐恒,等. 6种鳞翅目昆虫全基因组SSR分布规律[J/OL]. 基因组学与应用生物学:1-10[2020-09-15]. http://kns.cnki.net/kcms/detail/45.1369.Q.20190906.1548.004.html.
[25]HANCOCK J M. Simple sequences and the expanding genome[J]. BioEssays:News and Reviews in Molecular,Cellular and Developmental Biology,1996,18(5):421-425.
[26]涂飞云,刘晓华,杜联明,等. 大鼠全基因组微卫星分布特征研究[J]. 江西农业大学学报,2015,37(4):708-711.
[27]SCHUG M D,WETTERSTRAND K A,GAUDETTE M S,et al. The distribution and frequency of microsatellite loci in drosophila melanogaster[J]. Molecular Ecology,1998,7(1):57-70.
[28]魏朝明,孔光耀,廉振民,等. 蜜蜂全基因组中微卫星的丰度及其分布[J]. 昆虫知识,2007,44(4):501-504.
[29]崔凯,岳碧松. 绿尾虹雉全基因组微卫星分布规律研究[J]. 四川动物,2018,37(5):533-540.
[30]黄杰,周瑜,刘与之,等. 基于454 GS FLX高通量测序的四川山鹧鸪基因组微卫星特征分析[J]. 四川动物,2015,34(1):8-14.
[31]戚文华,蒋雪梅,肖国生,等. 牛和绵羊全基因组微卫星序列的搜索及其生物信息学分析[J]. 畜牧兽医学报,2013,44(11):1724-1733.
[32]戚文华,蒋雪梅,肖国生,等. 猪全基因组中微卫星分布规律[J]. 畜牧与兽医,2014,46(8):9-13.
[33]汪自立,黄杰,杜联明,等. 二斑叶螨和肩突硬蜱基因组微卫星分布规律研究[J]. 四川动物,2013,32(4):481-486.
[34]KATTI M V,RANJEKAR P K,GUPTA V S. Differential distribution of simple sequence repeats in eukaryotic genome sequences[J]. Molecular Biology and Evolution,2001,18(7):1161-1167.
[35]王晨,杜联明,李鹏,等. 德国小蠊全基因组中微卫星分布规律[J]. 昆虫学报,2015,58(10):1037-1045.
[36]余泉友,李斌,李关荣,等. 蚊子全基因组中微卫星的丰度及其分布(英文)[J]. 生物化学与生物物理进展,2005,32(5):435-441.
[37]BENNETT P. Demystified microsatellites[J]. Molecular Pathology,2000,53(4):177-183.
[38]王小婷,张玉娟,何秀,等. 中华按蚊全基因组微卫星的鉴定、特征及分布规律[J]. 昆虫学报,2016,59(10):1058-1068.
[39]HUANG J,LI Y Z,DU L M,et al. Genome-wide survey and analysis of microsatellites in giant panda(Ailuropoda melanoleuca),with a focus on the applications of a novel microsatellite marker system[J]. BMC Genomics,2015,16:61.
[40]段永楠,刘奕,胡隐昌,等. 美丽硬仆骨舌鱼全基因组微卫星分布规律特征[J]. 中国农学通报,2019,35(23):152-158.
[41]SCHLOTTERER C,TAUTZ D. Slippage synthesis of simple sequence DNA[J]. Nucleic Acids Research,1992,20(2):211-215.
[42]XU Y T,HU Z X,WANG C,et al. Characterization of perfect microsatellite based on genome-wide and chromosome level in Rhesus monkey(Macaca mulatta)[J]. Gene,2016,592(2):269-275.
[43]MORGANTE M,HANAFEY M,POWELL W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes[J]. Nature Genetics,2002,30(2):194-200.
[44]PEARSON C E,SINDEN R R. Trinucleotide repeat DNA structures:dynamic mutations from dynamic DNA[J]. Current Opinion in Structural Biology,1998,8(3):321-330.
[45]罗文永,胡骏,李晓方. 微卫星序列及其应用[J]. 遗传,2003,25(5):615-619.
[46]SCHLOTTERER C. Genome evolution:are microsatellites really simple sequences?[J]. Current Biology,1998,8(4):132-134.
[47]GALLIE D R. The cap and poly(A)tail function synergistically to regulate mRNA translational efficiency[J]. Genes Development,1991,5(11):2108-2116.
[48]BIRD A P. CpG-rich islands and the function of DNA methylation[J]. Nature,1986,321(6067):209-213.
[49]黄杰,原宝东,杨承忠. 虎皮鹦鹉全基因组中微卫星分布规律研究[J]. 野生动物学报,2017,38(3):422-426.
[50]WIERDL M,DOMINSKA M,PETES T D. Microsatellite instability in yeast:dependence on the length of the microsatellite[J]. Genetics,1997,146(3):769-779.
[51]LEOPOLDINO A M,PENA S D J. The mutational spectrum of human autosomal tetranucleotide microsatellites[J]. Human Mutation,2003,21(1):71-79.
[52]ELLEGREN H. Heterogeneous mutation processes in human microsatellite DNA sequences[J]. Nature Genetics,2000,24(4):400-402.