[1]袁 珊,万 游,孟佳杰,等.一种基于VINS/FINS组合导航方法[J].南京师范大学学报(工程技术版),2021,21(03):042-48.[doi:10.3969/j.issn.1672-1292.2021.03.006]
 Yuan Shan,Wan You,Meng Jiajie,et al.An Integrated Navigation Method Based on VINS/FINS[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(03):042-48.[doi:10.3969/j.issn.1672-1292.2021.03.006]
点击复制

一种基于VINS/FINS组合导航方法
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
21卷
期数:
2021年03期
页码:
042-48
栏目:
控制科学与工程
出版日期:
2021-09-30

文章信息/Info

Title:
An Integrated Navigation Method Based on VINS/FINS
文章编号:
1672-1292(2021)03-0042-07
作者:
袁 珊万 游孟佳杰汪雨婷钱伟行古翠红
南京师范大学南瑞电气与自动化学院,江苏 南京 210023
Author(s):
Yuan ShanWan YouMeng JiajieWang YutingQian WeixingGu Cuihong
NARI School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210023,China
关键词:
组合导航双足步行机器人视觉惯性导航系统零速修正信息双向融合
Keywords:
integrated navigationbiped walking robotvisual-inertial navigation systemzero-velocity updateinformation bidirectional fusion
分类号:
TP391.41
DOI:
10.3969/j.issn.1672-1292.2021.03.006
文献标志码:
A
摘要:
针对视觉惯性组合导航系统中微惯性器件精度偏低,以及足部惯性导航系统航向角误差可观测性差的问题,研究了一种基于上述两种系统的信息双向融合的导航定位方案. 该方法的系统结构由安装于双足步行机器人躯干部分的惯性导航系统和安装于其足部惯性导航系统两部分组成. 惯性导航系统通过视觉同时定位与地图构建数据融合方法可以获得相对准确的航向角,足部惯性导航系统利用零速修正后的位置信息实时修正惯性导航系统中的低精度惯性器件误差,从而构建视觉与惯性信息双向融合的组合导航系统结构. 实验结果表明,该组合导航方案可以有效提高双足步行机器人的航向精度和定位精度.
Abstract:
Aiming at the problems of low accuracy of micro inertial devices in vision/inertial integrated navigation system(VINS)and poor observability of course angle error of foot inertial navigation system(FINS),a navigation and positioning scheme based on the above two systems is studied. The system structure of this method is composed of two parts:the VINS navigation system installed on the trunk of the biped walking robot and the fins navigation system installed on the foot of the biped robot. VINS can obtain relatively accurate heading angle through visual slam data fusion method. FINS uses the position information after zero speed correction to correct the error of low precision inertial devices in VINS in real time,so as to construct the integrated navigation system structure of bidirectional fusion of vision and inertial information. The experimental results show that the integrated navigation scheme can effectively improve the navigation and positioning accuracy of biped walking robot indoor environment.

参考文献/References:

[1] 古翠红. 基于机器学习的行人导航系统关键技术研究[D]. 南京:南京师范大学,2020.
[2]YANG S,SCHERER S A,YI X D,et al. Multi-camera visual SLAM for autonomous navigation of micro aerial vehicles[J]. Robotics and Autonomous Systems,2017,93(3):116-134.
[3]MUR A R,TARDOS J D. Visual-inertial monocular SLAM with map reuse[J]. IEEE Robotics and Automation Letters,2017,2(2):796-803.
[4]QIN T,LI P L,SHEN S J. VINS-mono:a robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics,2018,34(4):1004-1020.
[5]赵小明,邓芳瑾,杨松普,等. 基于压力传感器辅助的行人室内定位零速修正方法[J]. 中国惯性技术学报,2018,26(1):1-5.
[6]胡棒. 智能双足机器人定位与导航系统[D]. 西安:西安电子科技大学,2015.
[7]刘鸿勋,王伟. 双目相机和激光雷达的融合SLAM研究[J]. 南京师范大学学报(工程技术版),2021,21(1):64-71.
[8]HENG L,LEE G H,POLLEFEYS M. Self-calibration and visual SLAM with a multi-camera system on a micro aerial vehicle[J]. Autonomous Robots,2015,39(3):259-277.
[9]YANG S,SCHERER S A,YI X,et al. Multi-camera visual SLAM for autonomous navigation of micro aerial vehicles[J]. Robotics and Autonomous Systems,2017,93(3):116-134.
[10]FORSTER C,CARLONE L,DELLAERT F,et al. On-manifold preintegration for real-time visual-inertial odometry[J]. IEEE Transactions on Robotics,2017,33(1):1-21.
[11]GU C H,QIAN W X,YANG S Q,et al. Application of system fault detection and intelligent reconstruction method based on machine learning in micro inertial pedestrian navigation system[C]//Proceedings of 5th IEEE Conference on Ubiquitous Positioning,Indoor Navigation and Location-Based Services(UPINLBS). Wuhan,China,2018.
[12]HARLE R. A survey of indoor inertial positioning systems for pedestrians[J]. IEEE Communications Survey & Tutorials,2013,15(3):1281-1293.
[13]钱伟行,周紫君,谢非,等. 基于机器学习与步态特征辅助的行人导航方法[J]. 中国惯性技术学报,2019,27(4):433-439,447.
[14]ZHUANG Y,SHEIMY N E. Tightly-coupled integration of WiFi and MEMS sensors on handheld devices for indoor pedestrian navigation[J]. IEEE Sensors Journal,2016,16(1):224-234.
[15]LI A,RUAN X,HUANG J,et al. Review of vision-based simultaneous localization and map-ping[C]//2019 IEEE 3rd Information Technology,Networking,Electronic and Automation Control Conference(ITNEC). Chengdu,China,2019.

备注/Memo

备注/Memo:
收稿日期:2021-03-11.
通讯作者:钱伟行,博士,副教授,研究方向:多传感器组合导航与定位. E-mail:61192@njnu.edu.cn.
更新日期/Last Update: 2021-09-30