[1]邵海雁,靳 诚,钟业喜,等.杭州西湖风景名胜区客流波动特征及景点发展模式划分[J].南京师范大学学报(工程技术版),2021,21(03):077-85.[doi:10.3969/j.issn.1672-1292.2021.03.011]
 Shao Haiyan,Jin Cheng,Zhong Yexi,et al.The Fluctuation Characteristics of Tourist Arrivals and Division of ScenicSpots Development Mode in Hangzhou West Lake Scenic Area[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(03):077-85.[doi:10.3969/j.issn.1672-1292.2021.03.011]
点击复制

杭州西湖风景名胜区客流波动特征及景点发展模式划分
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
21卷
期数:
2021年03期
页码:
077-85
栏目:
管理科学与工程
出版日期:
2021-09-30

文章信息/Info

Title:
The Fluctuation Characteristics of Tourist Arrivals and Division of ScenicSpots Development Mode in Hangzhou West Lake Scenic Area
文章编号:
1672-1292(2021)03-0077-09
作者:
邵海雁1靳 诚1钟业喜2冯兴华2
(1.南京师范大学地理科学学院,江苏 南京 210023)(2.江西师范大学地理与环境学院,江西 南昌 330022)
Author(s):
Shao Haiyan1Jin Cheng1Zhong Yexi2Feng Xinghua2
(1.School of Geography,Nanjing Normal University,Nanjing 210023,China)(2.School of Geography and Environment,Jiangxi Normal University,Nanchang 330022,China)
关键词:
客流波动类型划分小波分析杭州西湖风景名胜区
Keywords:
fluctuation of tourist arrivalstypes divisionwavelet analysisHangzhou West Lake Scenic Area
分类号:
K901
DOI:
10.3969/j.issn.1672-1292.2021.03.011
文献标志码:
A
摘要:
基于2009—2019年杭州西湖风景名胜区主要收费景点的月度客流数据,运用小波分析、相关分析、聚类分析法探讨景点客流周期波动特征及景点间客流的相关性,在此基础上划分其发展模式. 研究发现:主要收费景点的客流量差异显著且呈现出不同的峰值结构,在旅游者闲暇时间、黄金周效应、民俗文化等社会因素和气候等自然因素影响下的客流季节变化显著; 杭州西湖风景名胜区客流演变过程中存在4—5月尺度的自然季节性周期和8月尺度的体制季节性周期,16—19月尺度是自然、社会因素双重作用形成的年间周期,57—61月尺度周期则可能受经济周期、重大事件等影响; 根据景点感知度、景点类型、景点客流波动特征等,将主要收费景点的发展模式划分为4种类型:知名度主导型、热门景点辐射型、特色文化驱动型及“飞地式”发展模式.
Abstract:
Based on the monthly tourist arrivals data of major paid attractions in Hangzhou West Lake Scenic Area from 2009 to 2019,wavelet analysis,correlation analysis and cluster analysis are used to analyze the characteristics of tourist arrivals cycle fluctuation and the correlation of tourist arrivals among different scenic spots,and then the developmental modes are divided. The research fingdings are that:the tourist arrivals of main charging attractions are significantly different and present different peak structures; that under the influence of social factors such as tourists’ leisure time,golden week effect,folk culture and natural factors such as climate,the seasonal change of tourist arrivals is significant. There is a natural seasonal cycle on a scale from April to May and an institutional seasonal cycle on a scale of August in the evolution of tourist arrivals in Hangzhou West Lake Scenic Area; that the scale of 16-19 is an inter-annual cycle formed by the dual effects of natural and social factors; the scale of 57-61 monthly cycle may be affected by economics cycles and major events. According to the perception of attractions,types of attractions and the characteristics of tourist arrivals fluctuation,the developmental modes of major paid attractions are divided into four types:popularity-oriented,popular attractions radiation,characteristic culture-driven and“enclave-style”development mode.

参考文献/References:

[1] 靳诚,徐菁,黄震方,等. 南京城市内部景点间游客流动特征分析[J]. 地理学报,2014,69(12):1858-1870.
[2]MOU N X,ZHENG Y H,MAKKONEN T,et al. Tourists’ digital footprint:the spatial patterns of tourist flows in Qingdao,China[J]. Tourism Management,2020,81:104151.
[3]秦静,李郎平,唐鸣镝,等. 基于地理标记照片的北京市入境旅游流空间特征[J]. 地理学报,2018,73(8):1556-1570.
[4]钟全林,林宇. 福州市旅游客流量现状及其驱动因素[J]. 经济地理,2006,26(S2):70-73.
[5]LI Y Y,ZHOU B,WANG L E,et al. Effect of tourist flow on province-scale food resource spatial allocation in China[J]. Journal of Cleaner Production,2019,239:117931.
[6]王新越,曹婵婵. 基于网络游记的青岛市国内旅游客源市场结构与旅游流时空特征分析[J]. 地理科学,2019,39(12):1919-1928.
[7]余向洋,沙润,朱国兴,等. 基于EMD的景区客流波动特征及其组合预测—以黄山风景区为例[J]. 地理科学进展,2012,31(10):1353-1359.
[8]陈晓艳,张子昂,胡小海,等. 微博签到大数据中旅游景区客流波动特征分析——以南京市钟山风景名胜区为例[J]. 经济地理,2018,38(9):206-214.
[9]方叶林,程雪兰,黄震方,等. 国家重点风景名胜区网络关注度与游客量的错位特征及机理[J]. 经济地理,2020,40(4):204-213.
[10]闫闪闪,靳诚. 洛阳城区旅游流空间网络结构特征[J]. 地理科学,2019,39(10):1602-1611.
[11]朱晓华,杨秀春,蔡运龙. 基于灰色系统理论的旅游客源预测模型——以中国入境旅游客源为例[J]. 经济地理,2005,25(2):232-235.
[12]阎友兵,贺文娟. 国内旅游流流量与流质的时空演化分析[J]. 经济地理,2013,33(4):179-185.
[13]余向洋,沙润,胡善风. 近邻景区客流季节性比较及其动态关联研究——以西递、宏村、黄山为例[J]. 地理研究,2013,32(1):191-200.
[14]颜磊,许学工,章小平. 九寨沟世界遗产地旅游流时间特征分析[J]. 北京大学学报(自然科学版),2009,45(1):171-177.
[15]彭红松,陆林,路幸福,等. 基于社会网络方法的跨界旅游客流网络结构研究——以泸沽湖为例[J]. 地理科学,2014,34(9):1041-1050.
[16]陆林,宣国富,张锦河,等. 海滨型与山岳型旅游地客流季节性比较——以三亚、北海、普陀山、黄山、九华山为例[J]. 地理学报,2002,57(6):731-740.
[17]万田户,冯学钢,黄和平. 江西省山岳型风景名胜区旅游季节性差异——以庐山、井冈山、三清山和龙虎山为例[J]. 经济地理,2015,35(1):202-208.
[18]刘海洋,王乃昂,叶宜好,等. 我国沙漠旅游景区客流时空特征与影响因素——以鸣沙山、沙坡头、巴丹吉林为例[J]. 经济地理,2013,33(3):156-163.
[19]骆培聪,张明锋. 福建丹霞地貌旅游景区客流时间分布特性及其影响因素[J]. 地理科学,2010,30(3):377-383.
[20]刘泽华,李海涛,史春云,等. 短期旅游流时间分布对区域旅游空间结构的响应——以云南省黄金周旅游客流为例[J]. 地理学报,2010,65(12):1624-1632.
[21]刘泽华,张捷,吴小根,等. 特殊时段旅游客流时间分布对旅游地理结构响应研究——以北京、黄山、西安TDD黄金周旅游客流为例[J]. 人文地理,2010,25(1):129-133,11.
[22]梁增贤,保继刚. 主题公园黄金周游客流季节性研究——以深圳华侨城主题公园为例[J]. 旅游学刊,2012,27(1):58-65.
[23]李想,黄震方. 南京旅游客流时间分布特征分析[J]. 南京师大学报(自然科学版),2000,23(4):130-135.
[24]吴江,张秀香,叶玲翠,等. 不同时间尺度周期的旅游客流量波动特征研究——以西藏林芝市为例[J]. 地理研究,2016,35(12):2347-2362.
[25]蔡碧凡,陶卓民,张明如,等. 天目山景区客流季节性波动特征及影响因素[J]. 浙江农林大学学报,2015,32(6):947-957.
[26]袁林旺,俞肇元,黄震方,等. 游客变化的多尺度波动特征及作用过程分析——以盐城麋鹿生态旅游区为例[J]. 旅游学刊,2009,24(7):27-33.
[27]者萌,张雪芹,沈鹏珂,等. 京津冀地区1957—2017年气温变化时空格局[J]. 水土保持研究,2020,27(5):194-201.
[28]马丽君,孙根年,王洁洁. 基于本底趋势线与小波函数的中国旅游成长及多周期分析[J]. 旅游科学,2009,23(6):21-27.
[29]赵明成,周凤杰,鲁小波,等. 基于小波分析的锦州市旅游流时空特征研究[J]. 地域研究与开发,2019,38(3):84-88.
[30]吴耀宇,黄震方. 江苏省入境旅游客流波动性问题研究[J]. 经济经纬,2010(2):117-121.
[31]王钦安,孙根年. 传统型景区客流时间变化特征及成因探析——以琅琊山景区为例[J]. 干旱区资源与环境,2015,29(11):219-224.
[32]王国新,钱莉莉,陈韬,等. 旅游环境舒适度评价及其时空分异——以杭州西湖为例[J]. 生态学报,2015,35(7):2206-2216.
[33]WANG J J,LU X M,YAN Y T,et al. Spatiotemporal characteristics of PM 2.5 concentration in the Yangtze River Delta urban agglomeration,China on the application of big data and wavelet analysis[J]. Science of the Total Environment,2020,724:138134.
[34]徐芝英,胡云锋,甄霖,等. 基于小波的浙江省NDVI与自然——人文因子多尺度空间关联分析[J]. 地理研究,2015,34(3):567-577.
[35]杨志恒. 基于Ward法的区域空间聚类分析[J]. 中国人口·资源与环境,2010,20(3):382-386.
[36]石林松,张晓芳,孙皓. 中国区域经济周期长度的统计检验[J]. 统计与决策,2011(18):4-7.

备注/Memo

备注/Memo:
收稿日期:2020-11-16.
基金项目:国家自然科学基金项目(41871137).
通讯作者:靳诚,博士,教授,研究方向:区域发展与旅游地理. E-mail:jincheng2431@163.com
更新日期/Last Update: 2021-09-30