[1]王立凯,曲维光,魏庭新,等.基于深度学习的中文零代词识别[J].南京师范大学学报(工程技术版),2021,21(04):019-26.[doi:10.3969/j.issn.1672-1292.2021.04.004]
 Wang Likai,Qu Weiguang,Wei Tingxin,et al.Identification of Chinese Zero Pronouns Based on Deep Learning[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(04):019-26.[doi:10.3969/j.issn.1672-1292.2021.04.004]
点击复制

基于深度学习的中文零代词识别
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
21卷
期数:
2021年04期
页码:
019-26
栏目:
计算机科学与技术
出版日期:
2021-12-15

文章信息/Info

Title:
Identification of Chinese Zero Pronouns Based on Deep Learning
文章编号:
1672-1292(2021)04-0019-08
作者:
王立凯1曲维光12魏庭新3周俊生1顾彦慧1李 斌2
(1.南京师范大学计算机与电子信息学院,江苏 南京 210023)(2.南京师范大学文学院,江苏 南京 210097)(3.南京师范大学国际文化教育学院,江苏 南京 210097)
Author(s):
Wang Likai1Qu Weiguang12Wei Tingxin3Zhou Junsheng1Gu Yanhui1Li Bin2
(1.School of Computer and Electronic Information,Nanjing Normal University,Nanjing 210023,China)(2.School of Chinese Language and Literature,Nanjing Normal University,Nanjing 210097,China)(3.International College for Chinese Studies,Nanjing Normal University,Nanjing 210097,China)
关键词:
深度学习中文零指代零代词识别Tree-LSTM注意力机制
Keywords:
deep learningChinese zero pronounzero pronoun identificationTree-LSTMattention
分类号:
TP391
DOI:
10.3969/j.issn.1672-1292.2021.04.004
文献标志码:
A
摘要:
针对中文零代词识别任务,提出了一种基于深度神经网络的中文零代词识别模型. 首先,通过注意力机制利用零代词的上下文来帮助表示缺省的语义信息. 然后,利用Tree-LSTM挖掘零代词上下文的句法结构信息. 最后,利用语义信息和句法结构信息的融合特征识别零代词. 实验结果表明,相对于以往的零代词识别方法,该方法能够有效提升识别效果,在中文OntoNotes5.0数据集上的F1值达到63.7%.
Abstract:
To solve the task of Chinese zero pronoun identification,this paper proposes a Chinese zero pronoun identification model based on deep neural network. Firstly,attention mechanism is applied to learn more semantic information from the context of zero pronoun. Then,Tree-LSTM is used to capture syntactic structure features of the context of the zero pronoun. Finally,semantic information and syntactic structure information are combined to identify the zero pronoun. Compared with the previous zero pronoun identification methods,experiments on Chinese OntoNotes5.0 corpus show that our proposed approach can more effectively improve the recognition effect,and the F1 value reaches 63.7%.

参考文献/References:

[1] KIM Y J. Subject/object drop in the acquistion of korean:a cross-linguistic comparison[J]. Journal of East Asian Linguistics,2000,9(4):325-351.
[2]YIN Q Y,ZHANG Y,ZHANG W N,et al. Deep reinforcement learning for Chinese zero pronoun resolution[C]//Proceedings of 56th Annual Meeting of the Association for Computational linguistics. Melbourne:Association for Computational Linguistics,2018:569-578.
[3]YIN Q Y,ZHANG Y,ZHANG W N,et al. Zero pronoun resolution with attention-based neural network[C]//Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe:Association for Computational Linguistics,2018:13-23.
[4]LIN P Q,YANG M. Hierarchical attention network with pairwise loss for Chinese zero pronoun resolution[C]//Proceedings of 34th AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press,2020:8352-8358.
[5]秦凯伟,孔芳,李培峰,等. 基于规则的中文零指代项识别研究[J]. 计算机科学,2012,39(10):278-281.
[6]ZHAO S H,HWEE T N. Identification and resolution of Chinese zero pronouns:a machine learning approach[C]//Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Prague:Association for Computational Linguistics,2007:541-550.
[7]KONG F,ZHOU G D. A tree kernel-based unified framework for Chinese zero anaphora resolution[C]//Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Cambridge:Association for Computational Linguistics,2010:882-891.
[8]CHEN C,NG V. Chinese zero pronoun resolution:an unsupervised approach combining ranking and integer linear programming[C]//Twenty-Eighth AAAI Conference on Artificial Intelligence. Quebec:AAAI Press,2014:1622-1628.
[9]CHEN C,NG V. Chinese zero pronoun resolution with deep neural networks[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin:Association for Computational Linguistics,2016:778-788.
[10]LIU B Q,DU X K,LIU M,et al. Resolving Chinese zero pronoun with word embedding[C]//National CCF Conference on Natural Language Processing and Chinese Computing. Dalian:Springer,2017:828-838.
[11]KONG F,ZHOU G D. Chinese zero pronoun resolution:a chain to chain approach[C]//National CCF Conference on Natural Language Processing and Chinese Computing. Dalian:Springer,2017:393-405.
[12]SONG L F,XU K,ZHANG Y,et al. ZPR2:joint zero pronoun recovery and resolution using multi-task learning and BERT[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online:Association for Computational Linguistics,2020:5429-5434.
[13]PRADHAN S,MOSCHITTI A,XUE N W,et al. CoNLL-2012 shared task:modeling multilingual unrestricted coreference in OntoNotes[C]//Proceedings of the Joint Conference on EMNLP and CoNLL:Shared Task. Stroudsburg:Association for Computational Linguistics,2012:1-40.
[14]TAI K S,SOCHER R,MANNING C D. Improved semantic representations from tree-structured long short-term memory networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics. Beijing:Association for Computational Linguistics,2015:1556-1566.
[15]ERIGUCHI A,HASHIMOTO K,TSURUOKA Y. Tree-to-sequence attentional neural machine translation[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin:Association for Computational Linguistics,2016:823-833.

相似文献/References:

[1]程显毅,胡海涛,季国华,等.基于深度学习监控场景下的多尺度目标检测算法研究[J].南京师范大学学报(工程技术版),2018,18(03):033.[doi:10.3969/j.issn.1672-1292.2018.03.005]
 Cheng Xianyi,Hu Haitao,Ji Guohua,et al.Research on Algorithm of Multi-Scale Target DetectionBased on Deep Learning in Monitoring Scenario[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(04):033.[doi:10.3969/j.issn.1672-1292.2018.03.005]
[2]陈 扬,曾 诚,程 成,等.一种基于CNN的足迹图像检索与匹配方法[J].南京师范大学学报(工程技术版),2018,18(03):039.[doi:10.3969/j.issn.1672-1292.2018.03.006]
 Chen Yang,Zeng Cheng,Cheng Cheng,et al.A CNN-based Approach to Footprint Image Retrieval and Matching[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(04):039.[doi:10.3969/j.issn.1672-1292.2018.03.006]
[3]王俊淑,张国明,胡 斌.基于深度学习的推荐算法研究综述[J].南京师范大学学报(工程技术版),2018,18(04):033.[doi:10.3969/j.issn.1672-1292.2018.04.006]
 Wang Junshu,Zhang Guoming,Hu Bin.A Survey of Deep Learning Based Recommendation Algorithms[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(04):033.[doi:10.3969/j.issn.1672-1292.2018.04.006]
[4]郝 坤,张天坤,史振威.基于时空特征的热带气旋强度预测方法[J].南京师范大学学报(工程技术版),2019,19(03):001.[doi:10.3969/j.issn.1672-1292.2019.03.001]
 Hao Kun,Zhang Tiankun,Shi Zhenwei.An Tropical Cyclone Intensity Prediction MethodBased on Spatial-Temporal Features[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(04):001.[doi:10.3969/j.issn.1672-1292.2019.03.001]
[5]任媛媛,张显峰,马永建,等.基于卷积神经网络的无人机遥感影像农村建筑物目标检测[J].南京师范大学学报(工程技术版),2019,19(03):029.[doi:10.3969/j.issn.1672-1292.2019.03.005]
 Ren Yuanyuan,Zhang Xianfeng,Ma Yongjian,et al.Target Detection of Rural Buildings in UAV Remote Sensing ImagesBased on Convolutional Neural Network[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(04):029.[doi:10.3969/j.issn.1672-1292.2019.03.005]
[6]许博鸣,刘晓峰,业巧林,等.基于卷积神经网络面向自然场景建筑物识别技术的移动端应用[J].南京师范大学学报(工程技术版),2019,19(03):037.[doi:10.3969/j.issn.1672-1292.2019.03.006]
 Xu Boming,Liu Xiaofeng,Ye Qiaolin,et al.A Convolutional Neural Network Based on Mobile Application forIdentification of Buildings in Natural Scene[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(04):037.[doi:10.3969/j.issn.1672-1292.2019.03.006]
[7]吴燕如,珠 杰,管美静.基于深度学习的藏文现代印刷物版面检测技术研究[J].南京师范大学学报(工程技术版),2021,21(01):044.[doi:10.3969/j.issn.1672-1292.2021.01.007]
 Wu Yanru,Zhu Jie,Guan Meijing.Research on Layout Inspection Technology of ModernTibetan Prints Based on Deep Learning[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(04):044.[doi:10.3969/j.issn.1672-1292.2021.01.007]
[8]梁秦嘉,刘 怀,陆 飞.基于改进YOLOv3模型的交通视频目标检测算法研究[J].南京师范大学学报(工程技术版),2021,21(02):047.[doi:10.3969/j.issn.1672-1292.2021.02.008]
 Liang Qinjia,Liu Huai,Lu Fei.Traffic Video Target Detection Algorithm Based on Improved YOLOv3[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(04):047.[doi:10.3969/j.issn.1672-1292.2021.02.008]
[9]苏 叶,李 婧,徐寅林.手骨X光片骨龄预测中图像预处理的研究[J].南京师范大学学报(工程技术版),2021,21(02):054.[doi:10.3969/j.issn.1672-1292.2021.02.009]
 Su Ye,Li Jing,Xu Yinlin.Research on Image Preprocessing in Predicting the Bone Age ofHand Bone X-ray Films[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(04):054.[doi:10.3969/j.issn.1672-1292.2021.02.009]
[10]李庆涛,林培光,王基厚,等.基于板块效应的深度学习股价走势预测方法[J].南京师范大学学报(工程技术版),2022,22(01):030.[doi:10.3969/j.issn.1672-1292.2022.01.005]
 Li Qingtao,Lin Peiguang,Wang Jihou,et al.Deep Learning Stock Price Forecasting Method Based on Plate Effect[J].Journal of Nanjing Normal University(Engineering and Technology),2022,22(04):030.[doi:10.3969/j.issn.1672-1292.2022.01.005]

备注/Memo

备注/Memo:
收稿日期:2021-01-19.
基金项目:国家自然科学基金项目(61772278、61472191)、国家社科基金项目(18BYY127)和江苏高校哲学社会科学优秀创新团队建设项目.
通讯作者:曲维光,博士,教授,博士生导师,研究方向:自然语言处理. E-mail:wgqu_nj@163.com
更新日期/Last Update: 2021-12-15