[1]朱益秀,夏 燚,戴春祥.基于太阳能余热利用下的吸收式制冷系统的可行性研究[J].南京师范大学学报(工程技术版),2022,22(03):009-14.[doi:10.3969/j.issn.1672-1292.2022.03.002]
 Zhu Yixiu,Xia Yi,Dai Chunxiang.Feasibility Study of Absorption Refrigeration System Based on Solar Energy Waste Heat Utilization[J].Journal of Nanjing Normal University(Engineering and Technology),2022,22(03):009-14.[doi:10.3969/j.issn.1672-1292.2022.03.002]
点击复制

基于太阳能余热利用下的吸收式制冷系统的可行性研究
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
22卷
期数:
2022年03期
页码:
009-14
栏目:
动力工程及工程热物理
出版日期:
2022-09-15

文章信息/Info

Title:
Feasibility Study of Absorption Refrigeration System Based on Solar Energy Waste Heat Utilization
文章编号:
1672-1292(2022)03-0009-06
作者:
朱益秀夏 燚戴春祥
(南京师范大学能源与机械工程学院,江苏 南京 210023)
Author(s):
Zhu YixiuXia YiDai Chunxiang
(School of Energy and Mechanical Engineering,Nanjing Normal University,Nanjing 210023,China)
关键词:
太阳能热水系统水箱温度TRNSYS吸收式制冷系统性能指标
Keywords:
solar water heating systemwater tank temperatureTRNSYSabsorption refrigeration systemperformance index
分类号:
TU822
DOI:
10.3969/j.issn.1672-1292.2022.03.002
文献标志码:
A
摘要:
对南京某商用建筑真空热管太阳能热水系统进行相关参数测试,在平均辐照强度约为614.2 W/m2的照射条件下,集热器平均集热效率可达45%,8 m3蓄热水箱经过4 h的加热后,共吸收653 MJ的热量,水箱温度从63.8 ℃升高至80 ℃以上,达到了单效溴化锂吸收式制冷机组的驱动热源温度. 实验表明,该系统采用吸收式制冷来利用太阳能余热的技术方案具有可行性. 在此基础上,利用TRNSYS软件搭建溴化锂吸收式制冷系统模型,预测分析了吸收式制冷系统在实验当日辐照条件下的运行性能,结果表明该吸收式制冷系统在无辅助热源的条件下,可稳定运行5 h,系统性能系数COP的平均值为0.66,平均制冷量为9.41 kW,对其他地区将太阳能余热用于吸收式制冷的可行性研究具有一定的参考价值.
Abstract:
The relevant parameters of a vacuum heat pipe solar water heating system in a commercial building in Nanjing are tested. Under the average irradiation intensity of 614.2 W/m2,the average heat collection efficiency of the collector can reach 45%. The 8 m3 hot water storage tank absorbs a total of 653 MJ Heat,after being heated for 4 hours,the temperature of the water tank increases from 63.8 ℃ to over 80 ℃,reaching the driving heat source temperature of a single-effect lithium bromide absorption refrigeration unit,which proves the feasibility of the system using absorption refrigeration to utilize solar waste heat. On this basis,the TRNSYS software is used to build a simulation model of the lithium bromide absorption refrigeration system,and predict and analyze the operation performance of the absorption refrigeration system under the irradiation conditions on the day of the experiment. The results show that the absorption refrigeration system can run stably for 5 hours without an auxiliary heat source,that the average value of the system performance coefficient COP is 0.66,and that the average cooling capacity is 9.41 kW. It has certain reference value for the feasibility study of solar energy waste heat used in absorption refrigeration in other regions.

参考文献/References:

[1]胡志鹏,刘华凯,郝占栋. 一种太阳能热辅助溴化锂吸收式制冷机组空调系统的应用研究[J]. 制冷与空调(四川),2020,34(4):477-480.
[2]BELLOS E,TZIVANIDIS C. Energetic and financial analysis of solar cooling systems with single effect absorption chiller in various climates[J]. Applied Thermal Engineering,2017,126:809-821.
[3]SHIRAZI A,TAYLOR R A,WHITE S D,et al. A systematic parametric study and feasibility assessment of solar-assisted single-effect,double-effect,and triple-effect absorption chillers for heating and cooling applications[J]. Energy Conversion and Management,2016,114:258-277.
[4]CASCALES J,GARCÍA F,IZQUIERDO J,et al. Modelling an absorption system assisted by solar energy[J]. Applied Thermal Engineering,2011,31(1):112-118.
[5]李靖,朱川生,李华山,等. 采用不同集热器的太阳能吸收式制冷系统经济性分析[J]. 新能源进展,2018,6(5):379-386.
[6]CHEN J F,DAI Y J,WANG R Z. Experimental and analytical study on an air-cooled single effect LiBr-H2O absorption chiller driven by evacuated glass tube solar collector for cooling application in residential buildings[J]. Solar Energy,2017,151:110-118.
[7]FRANCIS A,IAN K,MICHAEL R. Design and experimental testing of the erformance of an outdoor LiBr/H2O solar thermal absorption cooling system with a cold store[J]. Solar Energy,2010,11(9):735-744.
[8]马瑞,谢应明,庄雅琪. 小型太阳能吸收式空调系统的仿真研究[J]. 热能动力工程,2019,34(2):132-136,156.
[9]ANDREA B,FRANCIS A. Modeling and simulation of a small-scale solar-powered absorption cooling system in three cities with a tropical climate[J]. International Journal of Low Carbon Technologies,2020,15(1):1-16.
[10]GRECO A,MASSELLI C. Dynamic investigation of a solar absorption cooling system in naples[J]. Tecnica Italiana—Italian Journal of Engineering Science,2020,64(2):277-283.
[11]ROSIEK S,BATLLES F J. Integration of the solar thermal energy in the construction:Analysis of the solar-assisted air-conditioning system installed in CIESOL building[J]. Renewable Energy,2009,34(6):1423-1431.
[12]王建辉,刘自强,周泉,等. 小型太阳能溴化锂吸收式制冷系统实验研究[J]. 中国高新技术企业,2016,(3):13-14.
[13]李悦,翟晓强,尹亚领,等. 基于辐射供冷的太阳能吸收式空调试验研究[J]. 可再生能源,2012,30(6):5-8.
[14]赵明海,洪仁龙,陶海臣,等. 溴化锂吸收式制冷机在太阳能领域的应用与前景[J]. 流体机械,2014,42(6):84-86.

备注/Memo

备注/Memo:
收稿日期:2022-03-05.
通讯作者:夏燚,博士,副教授,研究方向:太阳能管热应用及吸收式制冷技术. E-mail:njnuxiayi@163.com
更新日期/Last Update: 2022-09-15