参考文献/References:
[1]CHOWDHURY H,CHOWDHURY T,HOSSAIN N,et al. Exergetic sustainability analysis of industrial furnace:a case study[J]. Environmental Science and Pollution Research,2021,28:12881-12888.
[2]杨裔. 中央空调节能技术综述[J]. 现代信息科技,2019(13):193-194.
[3]CHEN X,SHUAI C Y,WU Y,et al. Understanding the sustainable consumption of energy resources in global industrial sector:Evidences from 114 countries[J]. Environmental Impact Assessment Review,2021,90:106609.
[4]刘亚东. 造纸厂蒸汽消耗需求预测研究及预测系统开发[D]. 广州:华南理工大学,2013.
[5]刘文华. 基于机器学习的火力发电蒸汽量预测方法研究[D]. 太原:太原科技大学,2019.
[6]MOGHADASI M,OZGOLI H A,FARHANI F. Steam consumption prediction of a gas sweetening process with methyldiethanolamine solvent using machine learning approaches[J]. International Journal of Energy Research,2021,45(1):879-893.
[7]王梦柯. 大型制造企业蒸汽智能供应策略优化的研究与应用[D]. 杭州:浙江理工大学,2020.
[8]彭桐歆,韩勇,王程,等. 面向短时地铁客流量预测的混合深度学习模型[J]. 计算机工程,2022,48(5):297-305.
[9]ZHANG J B,ZHENG Y,QI D K. Deep Spatio-temporal residual networks for citywide crowd flows prediction[C]//AAAI'17:Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco,USA:AAAI Press,2016:1655-1661.
[10]CHO K,MERRIENBOER B V,GULCEHRE C,et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). Doha,Qatar:ACL,2014.
[11]查玉坤,张其林,赵永标,等. 基于三维卷积和CLSTM神经网络的水产养殖溶解氧预测[J]. 应用科学学报,2021,39(4):615-626.
[12]DIBA A,FAYYAZ M,SHARMA V,et al. Temporal 3D ConvNets:new architecture and transfer learning for Video classification[J/OL]. arXiv preprint arXiv:1711.08200,2017.
[13]WANG Y B,GAO Z F,LONG M S,et al. PredRNN++:towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning[J/OL]. arXiv preprint arXiv:1804.06300,2018.
[14]国家市场监督管理总局,国家标准化管理委员会. 综合能耗计算通则:GB/T 2589-2020[S]. 北京:中国标准出版社,2020.
[15]简毅文,江亿. 住宅供暖空调能耗计算模式的研究[J]. 暖通空调,2005,35(2):11-14.
[16]JALAL M,JALAL H. Retracted:behavior assessment,regression analysis and support vector machine(SVM)modeling of waste tire rubberized concrete[J]. Journal of Cleaner Production,2020,273:122960.
[17]XU L,HOU L,ZHU Z Y,et al. Midterm prediction of electrical energy consumption for crude oil pipelines using a hybrid algorithm of support vector machine and genetic algorithm[J]. Energy,2021,222(1):119955.
[18]EAPEN J,VERMA A,BEIN D. Improved big data stock index prediction using deep learning with CNN and GRU[J]. International Journal of Big Data Intelligence,2021,7(4):202-210.
[19]陈聪,候磊,李乐乐,等. 基于GRU改进RNN神经网络的飞机燃油流量预测[J]. 科学技术与工程,2021,21(27):11663-11673.
[20]党建武,从筱卿. 基于CNN和GRU的混合股指预测模型研究[J]. 计算机工程与应用,2021,57(16):167-174.
[21]LIU L J,WANG L,YU Z. Remaining useful life estimation of aircraft engines based on deep convolution neural network and LightGBM combination model[J]. International Journal of Computational Intelligence Systems,2021,14:165.
[22]MUSLIM M A,DASRIL Y,ALAMSYAH A,et al. Bank predictions for prospective long-term deposit investors using machine learning LightGBM and SMOTE[J]. Journal of Physics:Conference Series,2021,1918(4):042143.
[23]WEI J,LI Z Q,PINKER R T,et al. Himawari-8-derived diurnal variations in ground-level PM2.5 pollution across China using the fast space-time Light Gradient Boosting Machine(LightGBM)[J]. Atmospheric Chemistry and Physics,2021,21(10):7863-7880.
[24]FARID M. Data-driven method for real-time prediction and uncertainty quantification of fatigue failure under stochastic loading using artificial neural networks and Gaussian process regression[J]. International Journal of Fatigue,2022,155:106415.
[25]REN C H,YANG Y X,DONG X,et al. Prediction of the maximum temperature of sulfur-containing oil using gaussian process regression for hazards prevention[J]. International Journal of Performability Engineering,2018,14(12):2951-2959.