[1]王茂发,冯十辰,黄鸿亮,等.基于短距空间光谱并行双向RNN的高光谱农业图像分类[J].南京师范大学学报(工程技术版),2022,22(04):001-8.[doi:10.3969/j.issn.1672-1292.2022.04.001]
 Wang Maofa,Feng Shichen,Huang Hongliang,et al.Shorten Special-spectral Parallel Bidirectional RNN for Hyperspectral Agricultural Image Classification[J].Journal of Nanjing Normal University(Engineering and Technology),2022,22(04):001-8.[doi:10.3969/j.issn.1672-1292.2022.04.001]
点击复制

基于短距空间光谱并行双向RNN的高光谱农业图像分类
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
22卷
期数:
2022年04期
页码:
001-8
栏目:
计算机科学与技术
出版日期:
2022-12-15

文章信息/Info

Title:
Shorten Special-spectral Parallel Bidirectional RNN for Hyperspectral Agricultural Image Classification
文章编号:
1672-1292(2022)04-0001-08
作者:
王茂发1冯十辰1黄鸿亮2龚启舟3万 泉1徐 智1
(1.桂林电子科技大学广西可信软件重点实验室,广西 桂林 541004)
(2.澳门大学科技学院数学系,中国 澳口 999078)
(3.北京信息科技大学理学院,北京 100192)
Author(s):
Wang Maofa1Feng Shichen1Huang Hongliang2Gong Qizhou3Wan Quan1Xu Zhi1
(1.Guangxi Key Laboratory of Trusted Software,Guilin University of Electronic Technology,Guilin 541004,China)
(2.Department of Mathematics,School of Science and Technology,University of Macau,Macau 999078,China)
(3.School of Applied Science,Beijing Information Science and Technology University,Beijing 100192,China)
关键词:
深度学习门控循环单元长短时记忆网络循环神经网络高光谱图像分类
Keywords:
deep learninggate recurrent unit(GRU)long short term mermory network(LSTM)recurrent neural networks(RNN)hyperspectral image classification
分类号:
TP391.4
DOI:
10.3969/j.issn.1672-1292.2022.04.001
文献标志码:
A
摘要:
提出一种新的短距空间并行双向RNN算法(shorten spatial-spectral parallel bidirectional RNN,St-SS-pBRNN)用于高光谱农业图像分类,通过组合多个卷积层实现了频谱和空间特征的同时利用,提升了图像的分类效果. 采用并行门控循环单元(gate recurrent unit,GRU)和双向RNN的组合架构,缩短了RNN的序列长度,大幅减少了模型的计算量. 在农业高光谱图像分类对比实验中,算法性能稳定,准确率比经典的短距空间并行GRU算法(shorten spatial-spectral parallel GRU,St-SS-pGRU)最优效果提升大于2%,相关模型有望在国内大范围的农业用地分类中得以推广应用.
Abstract:
A method is proposed for HSI classification using shorten spatial-spectral parallel bidirectional RNN(St-SS-pBRNN). By combining multi-convolutional layers,it not only uses the frequency information of spectrum but also considers the spatial characteristics in the images,thereby obtaining better performance and effects. Meanwhile,a combined architecture of parallel gate recurrent unit(GRU)and bidirectional RNN is adopted,which shortens the sequence length of RNN and greatly reduces the amount of calculation of the model. In the comparative experiments of agricultural hyperspectral image classification,the performance of the algorithm is stable and accurate,and its accuracy is more than 2% higher than the optimal effect of the classical shorten spatial-spectral parallel GRU(St-SS-pGRU). It is expected to be popularized and applied in a wide range of agricultural land classification in China.

参考文献/References:

[1]BIOUCAS-DIAS J M,PLAZA A,CAMPS-VALLS G,et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Geoence and Remote Sensing Magazine,2013,1(2):6-36.
[2]舒速,杨明,赵振凯. 基于分水岭的高光谱图像分类方法[J]. 南京师大学报(自然科学版),2015,38(1):91-97.
[3]朱志宾,丁世飞. 基于TWSVM的图像分类[J]. 南京师大学报(自然科学版),2014,37(3):8-14.
[4]王岽,吴见. 农作物各类高光谱遥感识别研究[J]. 地理与地理信息科学,2015,31(2):29-33.
[5]ZHU X X,TUIA D,MOU L,et al. Deep learning in remote sensing:a comprehensive review and list of resources[J]. IEEE Geoence and Remote Sensing Magazine,2018,5(4):8-36.
[6]陈跃. 改进可拓理论的带钢表面缺陷图像分类方法[J]. 南京师范大学学报(工程技术版),2016,16(3):54-62.
[7]LEE H,KWON H. Going deeper with contextual CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing,2016,26(10):4843-4855.
[8]ZHONG Z L,LI J,MA L F,et al. Deep residual networks for hyperspectral image classification[C]//2017 IEEE International Geoscience and Remote Sensing Symposium. Fort Worth,TX,USA,2017.
[9]MOU L,GHAMISI P,ZHU X X. Deep recurrent neural networks for hyperspectral image classification[J]. IEEE Transactions on Geoence and Remote Sensing,2017,55(7):3639-3655.
[10]SUNDERMEYER M,OPARIN I,GAUVAIN J L,et al. Comparison of feedforward and recurrent neural network language models[C]//2013 IEEE International Conference on Acoustics,Speech,and Signal Processing. Vancouver,BC,Canada,2013.
[11]FELIX A G,DOUGLAS E,JÜRGEN S. Applying LSTM to time series predictable through time-window approaches[C]//Proceedings of the 12th Italian Workshop on Neural Nets. Salerno,Italy:Springer,2002:193-200.
[12]BENGIO Y,SIMARD P,FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks,1994,5(2):157-166.
[13]WILLIAMS R J,ZIPSER D. A learning algorithm for continually running fully recurrent neural networks[J]. Neural Computation,2014,1(2):270-280.
[14]LI L,ZHANG H,SHEN Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing,2017,9(1):67.
[15]ZHONG Z L,LI J,LUO Z M. Spectral-spatial residual network for hyperspectral image classification:a 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,56(2):847-858.
[16]李冠东,张春菊,高飞,等. 双卷积池化结构的3D-CNN高光谱遥感影像分类方法[J]. 中国图象图形学报,2019,24(4):639-654.
[17]魏健,赵红涛,刘敦楠,等. 基于注意力机制的CNN-LSTM短期电力负荷预测方法[J]. 华北电力大学学报(自然科学版),2021,48(1):42-47.
[18]LIU Q S,ZHOU F,HANG R L,et al. Bidirectional-convolutional LSTM based spectral-spatial feature learning for hyperspectral image classification[J]. Remote Sensing,2017,9(12):1330.
[19]王文广,赵文杰. 基于GRU神经网络的燃煤电站NOx排放预测模型[J]. 华北电力大学学报(自然科学版),2020,47(1):96-103.
[20]XU Y H,DU B,ZHANG L P,et al. A band grouping based LSTM algorithm for hyperspectral image classification[C]//CCF Chinese Conference on Computer Vision. Singapore:Springer,2017:421-432.
[21]SCHUSTER M,PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing,1997,45(11):2673-2681.
[22]LUO H W. Shorten spatial-spectral RNN with parallel-GRU for hyperspectral image classification[J]. arXiv Preprint arXiv:1810.12563,2018.

相似文献/References:

[1]程显毅,胡海涛,季国华,等.基于深度学习监控场景下的多尺度目标检测算法研究[J].南京师范大学学报(工程技术版),2018,18(03):033.[doi:10.3969/j.issn.1672-1292.2018.03.005]
 Cheng Xianyi,Hu Haitao,Ji Guohua,et al.Research on Algorithm of Multi-Scale Target DetectionBased on Deep Learning in Monitoring Scenario[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(04):033.[doi:10.3969/j.issn.1672-1292.2018.03.005]
[2]陈 扬,曾 诚,程 成,等.一种基于CNN的足迹图像检索与匹配方法[J].南京师范大学学报(工程技术版),2018,18(03):039.[doi:10.3969/j.issn.1672-1292.2018.03.006]
 Chen Yang,Zeng Cheng,Cheng Cheng,et al.A CNN-based Approach to Footprint Image Retrieval and Matching[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(04):039.[doi:10.3969/j.issn.1672-1292.2018.03.006]
[3]王俊淑,张国明,胡 斌.基于深度学习的推荐算法研究综述[J].南京师范大学学报(工程技术版),2018,18(04):033.[doi:10.3969/j.issn.1672-1292.2018.04.006]
 Wang Junshu,Zhang Guoming,Hu Bin.A Survey of Deep Learning Based Recommendation Algorithms[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(04):033.[doi:10.3969/j.issn.1672-1292.2018.04.006]
[4]郝 坤,张天坤,史振威.基于时空特征的热带气旋强度预测方法[J].南京师范大学学报(工程技术版),2019,19(03):001.[doi:10.3969/j.issn.1672-1292.2019.03.001]
 Hao Kun,Zhang Tiankun,Shi Zhenwei.An Tropical Cyclone Intensity Prediction MethodBased on Spatial-Temporal Features[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(04):001.[doi:10.3969/j.issn.1672-1292.2019.03.001]
[5]任媛媛,张显峰,马永建,等.基于卷积神经网络的无人机遥感影像农村建筑物目标检测[J].南京师范大学学报(工程技术版),2019,19(03):029.[doi:10.3969/j.issn.1672-1292.2019.03.005]
 Ren Yuanyuan,Zhang Xianfeng,Ma Yongjian,et al.Target Detection of Rural Buildings in UAV Remote Sensing ImagesBased on Convolutional Neural Network[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(04):029.[doi:10.3969/j.issn.1672-1292.2019.03.005]
[6]许博鸣,刘晓峰,业巧林,等.基于卷积神经网络面向自然场景建筑物识别技术的移动端应用[J].南京师范大学学报(工程技术版),2019,19(03):037.[doi:10.3969/j.issn.1672-1292.2019.03.006]
 Xu Boming,Liu Xiaofeng,Ye Qiaolin,et al.A Convolutional Neural Network Based on Mobile Application forIdentification of Buildings in Natural Scene[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(04):037.[doi:10.3969/j.issn.1672-1292.2019.03.006]
[7]吴燕如,珠 杰,管美静.基于深度学习的藏文现代印刷物版面检测技术研究[J].南京师范大学学报(工程技术版),2021,21(01):044.[doi:10.3969/j.issn.1672-1292.2021.01.007]
 Wu Yanru,Zhu Jie,Guan Meijing.Research on Layout Inspection Technology of ModernTibetan Prints Based on Deep Learning[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(04):044.[doi:10.3969/j.issn.1672-1292.2021.01.007]
[8]梁秦嘉,刘 怀,陆 飞.基于改进YOLOv3模型的交通视频目标检测算法研究[J].南京师范大学学报(工程技术版),2021,21(02):047.[doi:10.3969/j.issn.1672-1292.2021.02.008]
 Liang Qinjia,Liu Huai,Lu Fei.Traffic Video Target Detection Algorithm Based on Improved YOLOv3[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(04):047.[doi:10.3969/j.issn.1672-1292.2021.02.008]
[9]苏 叶,李 婧,徐寅林.手骨X光片骨龄预测中图像预处理的研究[J].南京师范大学学报(工程技术版),2021,21(02):054.[doi:10.3969/j.issn.1672-1292.2021.02.009]
 Su Ye,Li Jing,Xu Yinlin.Research on Image Preprocessing in Predicting the Bone Age ofHand Bone X-ray Films[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(04):054.[doi:10.3969/j.issn.1672-1292.2021.02.009]
[10]王立凯,曲维光,魏庭新,等.基于深度学习的中文零代词识别[J].南京师范大学学报(工程技术版),2021,21(04):019.[doi:10.3969/j.issn.1672-1292.2021.04.004]
 Wang Likai,Qu Weiguang,Wei Tingxin,et al.Identification of Chinese Zero Pronouns Based on Deep Learning[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(04):019.[doi:10.3969/j.issn.1672-1292.2021.04.004]

备注/Memo

备注/Memo:
收稿日期:2022-03-16.
基金项目:国家自然科学基金资助项目(42164002,41504037)、广西科技计划项目(桂科AD20325004、桂科AD19110022).
通讯作者:王茂发,博士,副教授,研究方向:数据挖掘. E-mail:wangmaofa2008@126.com
更新日期/Last Update: 2022-12-15