参考文献/References:
[1]VAPNIK V N. The Nature of Statistical Learning Theory[M]. New York,USA:Springer NY,1995.
[2]CORTES C,VAPNIK V. Support-vector networks[J]. Machine Learning,1995,20(3):273-297.
[3]SUYKENS J A K,VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters,1999,9(3):293-300.
[4]FUNG G,MANGASARIAN O L. Proximal support vector machine classifiers[C]//Proceedings of the 7th ACM SIGKDD International Conference on Knowlege Discovery and Data Mining. San Francisco,USA:ACM,2001.
[5]JAYADEVA,KHEMCHANDANI R,CHANDRA S. Twin support vector machines for pattern classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(5):905-910.
[6]PENG X J. TSVR:an efficient twin support vector machine for regression[J]. Neural Networks,2010,23(3):365-372.
[7]PENG X J,CHEN D. PTSVRs:regression models via projection twin support vector machine[J]. Information Sciences,2018,435:1-14.
[8]杨晓敏. 改进灰狼算法优化支持向量机的网络流量预测[J]. 电子测量与仪器学报,2021,35(3):211-217.
[9]叶黎明,陈素根. 基于粒子群算法的投影孪生支持向量机[J]. 淮北师范大学学报(自然科学版),2021,42(1):29-35.
[10]顾吉峰,王蓓. 基于改进粒子群算法的孪生支持向量机[J]. 计算机工程与设计,2020,41(11):3078-3082.
[11]DING S F,ZHANG X K,YU J Z. Twin support vector machines based on fruit fly optimization algorithm[J]. International Journal of Machine Learning and Cybernetics,2016,7(2):193-203.
[12]DING S F,AN Y X,ZHANG X K,et al. Wavelet twin support vector machines based on glowworm swarm optimization[J]. Neurocomputing,2017,225:157-163.
[13]张谢锴,丁世飞. 基于马氏距离的孪生多分类支持向量机[J]. 计算机科学,2016,43(3):49-53.
[14]SARTAKHTI J S,AFRABANDPEY H,SARAEE M. Simulated annealing least squares twin support vector machine(SA-LSTSVM)for pattern classification[J]. Soft Computing,2017,21(15):4361-4373.
[15]黄宏运,吴礼斌,李诗争. GA优化的SVM在量化择时中的应用[J]. 南京师范大学学报(工程技术版),2017,17(1):72-79.
[16]WANG K N,PEI H M,DING X S,et al. Robust proximal support vector regression based on maximum correntropy criterion[J]. Scientific Programming,2019(3):7102946.
[17]张仕光,周婷,刘超,等. 高斯噪声特性区间ν-支持向量回归机[J]. 山西大学学报(自然科学版),2020,43(4):880-884.
[18]余乐安. 基于最小二乘近似支持向量回归模型的电子商务信用风险预警[J]. 系统工程理论与实践,2012,32(3):508-514.
[19]HU Q H,ZHANG S G,YU M,et al. Short-term wind speed or power forecasting with heteroscedastic support vector regression[J]. IEEE Transactions on Sustainable Energy,2016,7(1):241-249.