[1]邱 宇,李文魁,李 冕.基于随机森林的虚拟路谱准确度智能主观评价法[J].南京师范大学学报(工程技术版),2022,22(04):045-54.[doi:10.3969/j.issn.1672-1292.2022.04.006]
 Qiu Yu,Li Wenkui,Li Mian.Intelligent Subjective Evaluation of Virtual Road Load Data Accuracy Based on Random Forest[J].Journal of Nanjing Normal University(Engineering and Technology),2022,22(04):045-54.[doi:10.3969/j.issn.1672-1292.2022.04.006]
点击复制

基于随机森林的虚拟路谱准确度智能主观评价法
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
22卷
期数:
2022年04期
页码:
045-54
栏目:
计算机科学与技术
出版日期:
2022-12-15

文章信息/Info

Title:
Intelligent Subjective Evaluation of Virtual Road Load Data Accuracy Based on Random Forest
文章编号:
1672-1292(2022)04-0045-10
作者:
邱 宇1李文魁1李 冕23
(1.上海汽车集团股份有限公司技术中心试验认证部,上海 201804)
(2.上海交通大学密西根学院,上海 200240)
(3.上海交通大学电子信息与电气工程学院,上海 200240)
Author(s):
Qiu Yu1Li Wenkui1Li Mian23
(1.Test & Validation Department,SAIC Motor Technical Center,Shanghai 201804,China)
(2.UM-SJTU Joint Institute,Shanghai Jiao Tong University,Shanghai 200240,China)
(3.School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
关键词:
路谱采集机器学习随机森林时域信号主观评价
Keywords:
road load datamachine learningrandom foresttime series signalssubjective evaluation
分类号:
U467.4+97
DOI:
10.3969/j.issn.1672-1292.2022.04.006
文献标志码:
A
摘要:
针对当前虚拟路谱准确度评价方法中的局限性,利用随机森林建立了一个虚拟路谱的智能主观评分模型,以路谱的客观统计值作为模型输入,以主观评价的分值作为输出. 在建模过程中全面考虑信号的多方面特征,利用特征重要度筛选出最重要的6个客观统计值作为模型输入; 通过模型训练固化多位专家的专业评分经验,避免每次进行主观评分时由人为因素导致的结果波动. 工程应用显示,该模型的精度高、泛化能力强,是对虚拟路谱评价的一个全面、高效、准确的智能工具.
Abstract:
Considering the limitations of current methods for virtual road load data evaluation,an intelligent subjective evaluation model of virtual road load data signals based on random forest is proposed. The objective statistical parameters of time history signals are taken as the inputs and the scores of subjective evaluations from experts as the output. The most important six objective statistical parameters are selected through feature importance ranking,which takes various features of the time history signals into a comprehensive consideration. The professional evaluation experiences from many experts are solidified into the model by training,and the fluctuations caused by human factors is avoided. The intelligent subjective evaluation model has high accuracy and good generalization,and it is proven a comprehensive,efficient and accurate intelligent tool for virtual time history signal evaluation for real-world applications.

参考文献/References:

[1]邱宇,王磊,张皓清. 基于客户数据的混动车散热器热疲劳性能优化与认证[J]. 汽车零部件,2018(12):8-14.
[2]王灵龙,刘伟,李伟. 基于整车室内道路模拟的汽车零部件疲劳试验研究[J]. 汽车实用技术,2019(24):97-100.
[3]孙成智,段向雷,翁洋,等. 基于3D数字路面的整车耐久性能评价方法研究[J]. 汽车工程,2017,39(10):1211-1216.
[4]赵强,霍福祥,杨立峰,等. 发动机悬置支架多轴加载道路模拟试验方法研究[J]. 汽车文摘,2020(1):36-40.
[5]王长明,曹正林,彭亮,等. 虚拟试验载荷分析与试验验证研究[J]. 汽车技术,2016(8):43-47.
[6]左言言,张海峰,庄婷. 车内声品质主客观评价模型对比分析[J]. 江苏大学学报(自然科学版),2017,38(4):403-409.
[7]王添琪,马琼,李易. 整车防腐性能量化评价方法研究[J]. 汽车实用技术,2018(8):148-150.
[8]黄文杰,吕孟强,高鹏,等. 基于用户主观评价的车内气味调查研究[J]. 暖通空调,2020,50(4):14-20.
[9]毛东兴. 声品质研究与应用进展[J]. 声学技术,2007,26(1):159-164.
[10]柯蕙新,黄京华,沈浩. 调查研究中的统计分析法[M]. 北京:北京广播学院出版社,1992.
[11]DALIA V,ROSA E L,JUAN R. A Kendall correlation coefficient between functional data[J]. Advances in Data Analysis and Classification,2019,13(4):1083-1103.
[12]程琮,刘一志,王如德. Kendall协调系数W检验及其SPSS实现[J]. 泰山医学院学报,2010,31(7):487-490.
[13]AURÉLIEN G. Hands-On Machine Learning with Scikit-Learn and TensorFlow Concepts,Tools,and Techniques to Build Intelligent Systems[M]. Cambridge,USA:O'Reilly Media Inc,2017.
[14]奚杏杏,刘宇红,张荣芬. 基于网格搜索与交叉验证的SVR血压预测[J]. 计算机与现代化,2020(3):44-48.
[15]王兴玲,李占斌. 基于网格搜索的支持向量机核函数参数的确定[J]. 中国海洋大学学报(自然科学版),2005,35(5):859-862.
[16]彭漂. 基于随机森林的变量重要性度量和核密度估计算法研究[D]. 厦门:厦门大学,2017.
[17]BOULESTEIX A L,BENDER A,BERMEJO J L,et al. Random forest Gini importance favours SNPs with large minor allele frequency:impact,sources and recommendations[J]. Briefings in Bioinformatics,2012,13(3):292-304.

相似文献/References:

[1]杨杨,刘会东.一种基于成对约束的特征选择改进算法[J].南京师范大学学报(工程技术版),2011,11(01):056.
 Yang Yang,Liu Huidong.An Improved Algorithm for Feature Selection Based on Pairwise Constraint[J].Journal of Nanjing Normal University(Engineering and Technology),2011,11(04):056.
[2]赵红艳,等.基于机器学习与语义知识的动词隐喻识别[J].南京师范大学学报(工程技术版),2011,11(03):059.
 Zhao Hongyan,Qu Weiguang,et al.Chinese Verb Metaphor Recognition Based on Machine Learning and Semantic Knowledge[J].Journal of Nanjing Normal University(Engineering and Technology),2011,11(04):059.
[3]柏宏权,韩庆年.机器学习在适应性教学系统中的应用研究[J].南京师范大学学报(工程技术版),2007,07(04):076.
 Bai Hongquan,Han Qingnian.Application of Machine Learning in Adaptive Instructional System[J].Journal of Nanjing Normal University(Engineering and Technology),2007,07(04):076.
[4]吴兴惠,吴 迪,周玉萍,等.基于机器学习算法的稀土元素掺杂TiO2光催化活性分析[J].南京师范大学学报(工程技术版),2017,17(03):087.[doi:10.3969/j.issn.1672-1292.2017.03.013]
 Wu Xinghui,Wu Di,Zhou Yuping,et al.Photocatalytic Activity Prediction of Rare Earth Doped TiO2Based on Machine Learning Algorithm[J].Journal of Nanjing Normal University(Engineering and Technology),2017,17(04):087.[doi:10.3969/j.issn.1672-1292.2017.03.013]
[5]刘金晶,王丽英.在线学习社区发帖质量评价的回归模型研究[J].南京师范大学学报(工程技术版),2020,20(01):033.[doi:10.3969/j.issn.1672-1292.2020.01.006]
 Liu Jinjing,Wang Liying.Regression Model Research on Posting Quality Evaluationin Online Learning Community[J].Journal of Nanjing Normal University(Engineering and Technology),2020,20(04):033.[doi:10.3969/j.issn.1672-1292.2020.01.006]
[6]陈 斌,樊飞燕,张 睿.年龄算子深度稀疏融合扩展表情识别[J].南京师范大学学报(工程技术版),2023,23(03):043.[doi:10.3969/j.issn.1672-1292.2023.03.006]
 Chen Bin,Fan Feiyan,Zhang Rui.Age Operator Deep Sparse Fusion Extension of the Expression Recognition[J].Journal of Nanjing Normal University(Engineering and Technology),2023,23(04):043.[doi:10.3969/j.issn.1672-1292.2023.03.006]

备注/Memo

备注/Memo:
收稿日期:2021-06-22.
通讯作者:邱宇,高级工程师,研究方向:汽车整车数据采集试验、大数据分析及机器学习. E-mail:qiuyu_1123@163.com
更新日期/Last Update: 2022-12-15