参考文献/References:
[1]LI S T,KANG X D,FANG L Y,et al. Pixel-level image fusion:a survey of the state of the art[J]. Information Fusion,2017,33:100-112.
[2]汪前进,朱斌,李存华. 基于特征点的图像拼接方法的研究与应用[J]. 南京师范大学学报(工程技术版),2016,16(3):48-53.
[3]ZHANG H,XU H,TIAN X,et al. Image fusion meets deep learning:a survey and perspective[J]. Information Fusion,2021,76:323-336.
[4]唐聪,凌永顺,杨华,等. 基于深度学习的红外与可见光决策级融合跟踪[J]. 激光与光电子学进展,2019,56(7):209-216.
[5]MA J Y,MA Y,LI C. Infrared and visible image fusion methods and applications:a survey[J]. Information Fusion,2019,45:153-178.
[6]游梓童,吴福明,赵淼,等. 融合高阶信息增强模块的复杂背景植物叶片图像分类[J]. 南京师范大学学报(工程技术版),2022,22(3):45-52.
[7]李莹,朱文艳,袁飞,等. 基于形态学和平均梯度的小波图像融合算法[J]. 南京师范大学学报(工程技术版),2013,13(4):76-81.
[8]CHEN J,LI X J,LUO L B,et al. Infrared and visible image fusion based on target-enhanced multiscale transform decomposition[J]. Information Sciences,2020,508:64-78.
[9]LI H,WU X J,KITTLER J. MDLatLRR:a novel decomposition method for infrared and visible image fusion[J]. IEEE Transactions on Image Processing,2020,29:4733-4746.
[10]LIU Y,CHEN X,WARD R K,et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters,2016,23(12):1882-1886.
[11]ZHANG Q,LIU Y,BLUM R S,et al. Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images:a review[J]. Information Fusion,2018,40:57-75.
[12]LI H,LIU L,HUANG W,et al. An improved fusion algorithm for infrared and visible images based on multi-scale transform[J]. Infrared Physics & Technology,2016,74:28-37.
[13]BAVIRISETTI D P,XIAO G,LIU G. Multi-sensor image fusion based on fourth order partial differential equations[C]//Proceedings of the 20th International Conference on Information Fusion(Fusion). Xi'an,China:IEEE,2017.
[14]NAIDU A R,BHAVANA D,REVANTH P,et al. Fusion of visible and infrared images via saliency detection using two-scale image decomposition[J]. International Journal of Speech Technology,2020,23(4):815-824.
[15]MA J L,ZHOU Z Q,WANG B,et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology,2017,82:8-17.
[16]HUANG G,LIU Z,VAN DER MAATEN L,et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu,USA:IEEE,2017.
[17]LIU Y,CHEN X,PENG H,et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion,2017,36:191-207.
[18]LI H,WU X J. DenseFuse:a fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing,2018,28(5):2614-2623.
[19]MA J Y,YU W,LIANG P W,et al. FusionGAN:a generative adversarial network for infrared and visible image Fusion[J]. Information Fusion,2019,48:11-26.
[20]HE K M,ZHANG X Y,REN S Q,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas,USA:IEEE,2016.
[21]ZHAO H S,SHI J P,QI X J,et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu,USA:IEEE,2017.
[22]WANG Z,BOVIK A C,SHEIKH H R,et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing,2004,13(4):600-612.
[23]TOET A. TNO image fusion dataset,2014[EB/OL]. [2021-02-20]. https://figshare.com/articles/TNO_Image_Fusion_Dataset/1008029.
[24]MA J Y,CHEN C,LI C,et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion,2016,31:100-109.
[25]ZHOU Z Q,WANG B,LI S,et al. Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters[J]. Information Fusion,2016,30:15-26.
[26]ZHANG H,MA J Y. SDNet:a versatile squeeze-and-decomposition network for real-time image fusion[J]. International Journal of Computer Vision,2021,129(10):2761-2785.
[27]ZHANG H,XU H,XIAO Y,et al. Rethinking the image fusion:a fast unified image fusion network based on proportional maintenance of gradient and intensity[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(7):12797-12804.
[28]ZHAO Z X,XU S,ZHANG J S,et al. Efficient and model-based infrared and visible image fusion via algorithm unrolling[J]. IEEE Transactions on Circuits and Systems for Video Technology,2021,32(3):1186-1196.
[29]LI H,WU X J,KITTLER J. RFN-Nest:an end-to-end residual fusion network for infrared and visible images[J]. Information Fusion,2022,73:72-86.
[30]TANG L F,YUAN J T,ZHANG H,et al. PIAFusion:a progressive infrared and visible image fusion network based on illumination aware[J]. Information Fusion,2022,83/84:79-92.
[31]XU H,MA J Y,JIANG J J,et al. U2Fusion:a unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(1):502-518.
[32]RAO Y J. In-fibre Bragg grating sensors[J]. Measurement Science and Technology,1997,8(4):355-375.
[33]HUYNH-THU Q,GHANBARI M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters,2008,44(13):800-801.
[34]SARA U,AKTER M,UDDIN M S. Image quality assessment through FSIM,SSIM,MSE and PSNR—a comparative study[J]. Journal of Computer and Communications,2019,7(3):8-18.
[35]LARSON E C,CHANDLER D M. Most apparent distortion:full-reference image quality assessment and the role of strategy[J]. Journal of Electronic Imaging,2010,19(1):011006.
[36]ASLANTAS V,BENDES E. A new image quality metric for image fusion:the sum of the correlations of differences[J]. AEU—International Journal of Electronics and Communications,2015,69(12):1890-1896.
[37]ROBERTS J W,VAN AARDT J A,AHMED F B. Assessment of image fusion procedures using entropy,image quality,and multispectral classification[J]. Journal of Applied Remote Sensing,2008,2(1):023522.