参考文献/References:
[1]周海榆,张道强. 面向多中心数据的超图卷积神经网络及应用[J]. 计算机科学,2022,49(3):129-133.
[2]MCMAHAN H B,MOORE E,RAMAGE D,et al. Communication-efficient learning of deep networks from decentralized data[C]//Proceedings of the 20th International Conference on Artificial Intelligence and Statistics(AISTATS). Fort Lauderdale,USA:JMLR,2017.
[3]YANG Q,LIU Y,CHEN T,et al. Federated machine learning:concept and applications[J]. ACM Transactions on Intelligent Systems and Technology,2019,10(2):1-19.
[4]YANG Q,LIU Y,CHENG Y,et al. Federated Learning[M]. San Rafael,USA:Morgan & Claypool Publishers,2019.
[5]LI T,SAHU A K,TALWALKAR A,et al. Federated learning:challenges,methods,and future directions[J]. IEEE Signal Processing Magazine,2020,37(3):50-60.
[6]HINTON G,VINYALS O,DEAN J. Distilling the knowledge in a neural network[J]. Computer Science,2015,14(7):38-39.
[7]VIELZEUF V,LECHERVY A,PATEUX S,et al. Towards a general model of knowledge for facial analysis by multi-source transfer learning[J]. arXiv Preprint arXiv:1911.03222,2019.
[8]WANG J,BAO W D,SUN L C,et al. Private model compression via knowledge distillation[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2019,33(1):1190-1197.
[9]VONGKULBHISAL J,VINAYAVEKHIN P,VISENTINI-SCARZANELLA M. Unifying heterogeneous classifiers with distillation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach,USA:IEEE,2019.
[10]SHELLER M J,REINA G A,EDWARDS B,et al. Multi-institutional deep learning modeling without sharing patient data:a feasibility study on brain tumor segmentation[C]//Proceedings of the 4th International MICCAI Brainlesion Workshop. Granada,Spain:Springer,2018.
[11]ZHANG W S,ZHOU T,LU Q H,et al. Dynamic fusion-based federated learning for COVID-19 detection[J]. IEEE Internet of Things Journal,2021,8(21):15884-15891.
[12]MA X,ZHU J,LIN Z,et al. A state-of-the-art survey on solving Non-IID data in federated learning[J]. Future Generation Computer Systems,2022,135:244-258.
[13]JEONG E,OH S,KIM H,et al. Communication-efficient on-device machine learning:federated distillation and augmentation under Non-IID private data[J]. arXiv Preprint arXiv:1811.11479,2018.
[14]JIANG D L,SHAN C,ZHANG Z H. Federated learning algorithm based on knowledge distillation[C]//Proceedings of the 2020 International Conference on Artificial Intelligence and Computer Engineering(ICAICE). Beijing,China:IEEE,2020.
[15]CHA H,PARK J,KIM H,et al. Proxy experience replay:federated distillation for distributed reinforcement learning[J]. IEEE Intelligent Systems,2020,35(4):94-101.
[16]ITAHARA S,NISHIO T,KODA Y,et al. Distillation-based semi-supervised federated learning for communication-efficient collaborative training with Non-IID private data[J]. arXiv Preprint arXiv:2008.06180,2020.
[17]MARTINO A D,YAN C G,LI Q,et al. The autism brain imaging data exchange:towards a large-scale evaluation of the intrinsic brain architecture in autism[J]. Molecular Psychiatry,2014,19(6):659-667.
[18]LI X X,JIANG M R,ZHANG X F,et al. FedBN:federated learning on Non-IID features via local batch normalization[J]. arXiv Preprint arXiv:2102.07623,2021.
[19]LI T,SAHU A K,ZAHEER M,et al. Federated optimization in heterogeneous networks[J]. avXiv Preprint arXiv:1812.06127,2020.