参考文献/References:
[1]王飞,胡荣林,金鹰. 基于3D-CBAM注意力机制的人体动作识别[J]. 南京师范大学学报(工程技术版),2021,21(1):49-56.
[2]DONAHUE J,HENDRICKS L A,GUADARRAMA S,et al. Long-term recurrent convolutional networks for visual recognition and description[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Boston,USA:IEEE,2015.
[3]TRAN D,BOURDEV L,FERGUS R,et al. Learning spatiotemporal features with 3d convolutional networks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision(CVPR). Santiago,Chile:IEEE,2015.
[4]GUO G D,LAI A. A survey on still image based human action recognition[J]. Pattern Recognition,2014,47(10):3343-3361.
[5]YAN C,COENEN F,ZHANG B L. Driving posture recognition by joint application of motion history image and pyramid histogram of oriented gradients[J]. International Journal of Vehicular Technology,2014,846:719413.
[6]SHARMA G,JURIE F,SCHMID C. Discriminative spatial saliency for image classification[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Providence,USA:IEEE,2012.
[7]KOESDWIADY A,BEDAWI S M,OU C,et al,End-to-end deep learning for driver distraction recognition[C]//Proceedings of the 2017 International Conference on Image Analysis and Recognition. Montreal,Canada:Springer,2017.
[8]HU Y C,LU M Q,LU X B. Driving behaviour recognition from still images by usingmulti-stream fusion CNN[J]. Machine Vision and Applications,2019,30(5):851-865.
[9]OU C J,OUALI C,KARRAY F. Transfer learning based strategy for improving driver distraction recognition[C]//Proceedings of the 2018 International Conference on Image Analysis and Recognition. Pvoa de Varzim,Portugal:Springer,2018.
[10]BAHETI B,GAJRE S,TALBAR S. Detection of distracted driver using convolutional neural network[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW). Salt Lake City,USA:IEEE,2018.
[11]LE T H N,ZHENG Y,ZHU C C,et al. Multiple scale faster-RCNN approach to driver's cell-phone usage and hands on steering wheel detection[C]//Proceedings of the IEEE Conferenceon Computer Vision and Pattern Recognition Workshops(CVPRW). Las Vegas,USA:IEEE,2016.
[12]梁秦嘉,刘怀,陆飞. 基于改进YOLOv3的运动目标分类检测算法研究[J]. 南京师范大学学报(工程技术版),2021,21(4):27-32.
[13]LIN T Y,DOLLÁR P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu,USA:IEEE,2017.
[14]LIU S,QI L,QIN H F,et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City,USA:IEEE,2018.
[15]YUN S D,HAN D Y,CHUN S H,et al. CutMix:regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision(ICCV). Seoul,Korea:IEEE,2019.
[16]REZATOFIGHI H,TSOI N,GWAK J Y,et al. Generalized intersection over union:a metric and a loss for bounding box regression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach,USA:IEEE,2019.
[17]HAN K,WANG Y H,TIAN Q,et al. GhostNet:more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle,USA:IEEE,2020.
[18]HU J,SHEN L,ALBANIE S,et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,42(8):2011-2023.
[19]殷业瑜,高家全,李莹. 面向印花图案检索的特征融合方法研究[J]. 南京师大学报(自然科学版),2022,45(2):118-125.
[20]REN S Q,HE K M,GIRSHICK R,et al. Faster R-CNN:towards real time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[21]LIU W,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam,The Netherlands:Springer,2016.
[22]ZHOU X Y,WANG D Q,KRÄHENBÜHL P. Objects as points[EB/OL]. arXiv Preprint arXiv:1904.07850v2,2019.
[23]LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):318-327.
[24]JOCHER G. Yolov5[EB/OL]. [2020-08-09]. https://github. com/ultralyc-s/yolov5.