参考文献/References:
[1]DABOV K,FOI A,KATKOVNIK V,et al. Image denoising with block-matching and 3D filtering[C]//International Society for Optics and Photonics.Washington,USA,2006:6064-6078.
[2]GU S,ZHANG L,ZUO W,et al. Weighted nuclear norm minimization with application to image denoising[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus,Ohio,USA,2014:2862-2869.
[3]RONNEBERGER O,FISCHER P,BROX T. U-Net:Convolutional networks for biomedical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Switzerland:Springer. 2015:234-241.
[4]ZHANG K,ZUO W,CHEN Y,et al. Beyond a Gaussian denoiser:residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing,2017,26(7):3142-3155.
[5]ZHANG K,ZUO W,ZHANG L. FFDNet:Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing,2018,27(9):4608-4622.
[6]PARK B,YU S,JEONG J. Densely connected hierarchical network for image denoising[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach,CA,USA,2019.
[7]GURROLA-RAMOS J,DALMAU O,ALARCÓN T E. A residual dense U-Net neural network for image denoising[J]. IEEE Access,2021,9:31742-31754.
[8]AGUSTSSON E,TIMOFTE R. Ntire 2017 challenge on single image super-resolution:Dataset and study[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu,Hawaii,USA,2017:126-135.
[9]LIU Z,LIN Y,CAO Y,et al. Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. USA:IEEE,2021:10012-10022.
[10]LIANG J Y,CAO J Z,SUN G L,et al. SwinIR:Image restoration using swin transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. USA:IEEE,2021:1833-1844.
[11]NIKLAUS S,MAI L,LIU F. Video frame interpolation via adaptive convolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu,Hawaii,USA,2017:670-679.
[12]WU H,QU Y,LIN S,et al. Contrastive learning for compact single image dehazing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. USA:IEEE,2021:10551-10560.
[13]WANG X,GIRSHICK R,GUPTA A,et al. Non-local neural net-works[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City,Utah,USA,2018:7794-7803.
[14]ZHANG Y,LI K,LI K,et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision. Berlin:Springer Science,2018:286-301.
[15]LI K,WANG Y,ZHANG J,et al. Uniformer:Unifying convolution and self-attention for visual recognition[J]. arXiv Preprint arXiv:2201.09450,2022.
[16]FAN C M,LIU T J,LIU K H. Selective residual M-Net for real image denoising[J]. arXiv Preprint arXiv:2203.01645,2022.
[17]FAN C M,LIU T J,LIU K H. SUNet:Swin transformer UNet for image denoising[J]. arXiv Preprint arXiv:2202.14009,2022.
[18]CHEN B X,LIU T J,LIU K H,et al. Image super-resolution using complex dense block on generative adversarial networks[C]//2019 IEEE International Conference on Image Processing. Taipei,China,2019:2866-2870.
[19]BUADES A,COLL B,MOREL J M. A non-local algorithm for image denoising[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego,CA,USA,2005,2:60-65.
[20]DONG W S,LI X,ZHANG L,et al. Sparsity-based image denoising via dictionary learning and structural clustering[C]//CVPR 2011. Colorado Springs,CO,USA,2011.
[21]XU L,ZHENG S,JIA J. Unnatural L0 sparse representation for natural image deblurring[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Oregon,Portland,2013.
[22]CHAN T F,WONG C K. Total variation blind deconvolution[J]. IEEE Transactions on Image Processing,1998,7(3):370-375.
[23]KRAHMER F,LIN Y Z,MCADOO B Z,et al. Blind image deconvolution:motion blur estimation[J/OL]. University of Minnesota,2006,9[2022-05-15]. http://purl.umn.edu/3685.
[24]WEN K Y,LIU T J,LIU K H,et al. Identifying poultry farms from satellite images with residual dense U-Net[C]//2020 IEEE International Conference on Systems,Man,and Cybernetics. Toronto,ON,Canada,2020.
[25]SHI M Z,XU T F,FENG L,et al. Single image deblurring using novel image prior constraints[J]. Optik,2013,124(20):4429-4434.
[26]XIAO X,LIAN S,LUO Z,et al. Weighted res-unet for high-quality retina vessel segmentation[C]//2018 9th International Conference on Information Technology in Medicine and Education. Hangzhou,China,2018
[27]GUAN S,KHAN A A,SIKDAR S,et al. Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal[J]. IEEE Journal of Biomedical and Health Informatics,2019,24(2):568-576.
[28]JIN Q,MENG Z,SUN C,et al. RA-UNet:A hybrid deep attention-aware network to extract liver and tumor in CT scans[J]. Frontiers in Bioengineering and Biotechnology,2020,8:1471.
[29]YAN Q,ZHANG L,LIU Y,et al. Deep HDR imaging via a non-local network[J]. IEEE Transactions on Image Processing,2020,29:4308-4322.
[30]SHI W,CABALLERO J,HUSZAc'1R F,et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. USA:IEEE,2016:1874-1883.
[31]MARTIN D,FOWLKES C,TAL D,et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the Eighth IEEE International Conference on Computer Vision. ICCV 2001. USA:IEEE,2002:416-423.