参考文献/References:
[1]SEITZ S M,CURLESS B,DIEBEL J,et al. A comparison and evaluation of multi-view stereo reconstruction algorithms[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York,NY,USA:IEEE,2006,1:519-528.
[2]HARTLEY R,ZISSERMAN A. Multiple view geometry in computer vision[M]. London:Cambridge University Press,2003.
[3]韩文军,孙小虎,吉根林,等. 基于卷积神经网络的多光谱与全色遥感图像融合算法[J]. 南京师大学报(自然科学版),2021,44(3):123-130.
[4]杨会君,王瑞萍,王增莹,等. 基于多视角图像的作物果实三维表型重建[J]. 南京师大学报(自然科学版),2021,44(2):92-103.
[5]张天安,云挺,薛联凤,等. 基于骨架提取的树木主枝干三维重建算法[J]. 南京师范大学学报(工程技术版),2014,14(4):51-57.
[6]WU Z,SONG S,KHOSLA A,et al. 3D shapeNets:A deep representation for volumetric shapes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston,Massachusetts,USA,2015:1912-1920.
[7]TULSIANI S,ZHOU T,EFROS A A,et al. Multi-view supervision for single-view reconstruction via differentiable ray consistency[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu,Hawaii,USA,2017:2626-2634.
[8]LI K,PHAM T,ZHAN H,et al. Efficient dense point cloud object reconstruction using deformation vector fields[C]//Proceedings of the European Conference on Computer Vision. Munich,Germany,2018:497-513.
[9]SMITH E,FUJIMOTO S,MEGER D. Multi-view silhouette and depth decomposition for high resolution 3D object representation[J]. Advances in Neural Information Processing Systems,2018,31.
[10]ZHU Q,MIN C,WEI Z,et al. Deep learning for multi-view stereo via plane sweep:a survey[J]. arXiv Preprint arXiv:2106.15328,2021.
[11]YAO Y,LUO Z,LI S,et al. Mvsnet:Depth inference for unstructured multi-view stereo[C]//Proceedings of the European Conference on Computer Vision(ECCV). Munich,Germany,2018.
[12]YU Z,GAO S. Fast-Mvsnet:Sparse-to-dense multi-view stereo with learned propagation and gauss-newton refinement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle,WA,USA,2020.
[13]SABOUR S,FROSST N,HINTON G E. Dynamic routing between capsules[C]//31st Conference on Advances in Neural Information Processing Systems. Long Beach,CA,USA,2017,30.
[14]HINTON G E,SABOUR S,FROSST N. Matrix capsules with EM routing[C]//International conference on learning representations. Vancouver,Canada,2018.
[15]SCHONBERGER J L,FRAHM J M. Structure-from-motion revisited[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,Nevada,USA,2016.
[16]BARNES C,SHECHTMAN E,FINKELSTEIN A,et al. PatchMatch:a randomized correspondence algorithm for structural image editing[J]. ACM Transactions on Graphics,2009,28(3):24.
[17]ULLMAN S. The interpretation of structure from motion[J]. Proceedings of the Royal Society of London. Series B. Biological Sciences,1979,203(1153):405-426.
[18]MOULON P,MONASSE P,PERROT R,et al. Openmvg:open multiple view geometry[C]//International Workshop on Reproducible Research in Pattern Recognition. Cancún,Mexico,2016:60-74.
[19]GOESELE M,SNAVELY N,CURLESS B,et al. Multi-view stereo for community photo collections[C]//2007 IEEE 11th International Conference on Computer Vision. Rio de Janeiro,Brazil,2007.
[20]HAN X,LEUNG T,JIA Y,et al. Matchnet:Unifying feature and metric learning for patch-based matching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston,MA,USA,2015.
[21]KENDALL A,MARTIROSYAN H,DASGUPTA S,et al. End-to-end learning of geometry and context for deep stereo regression[C]//Proceedings of the IEEE International Conference on Computer Vision. Chengdu,China,2017.
[22]CLARK R,WANG S,WEN H,et al. Vinet:Visual-inertial odometry as a sequence-to-sequence learning problem[C]//Proceedings of the AAAI Conference on Artificial Intelligence. San Francisco,USA,2017.
[23]JI M,GALL J,ZHENG H,et al. Surfacenet:An end-to-end 3D neural network for multiview stereopsis[C]//Proceedings of the IEEE International Conference on Computer Vision. Chengdu,China,2017.
[24]HUANG P H,MATZEN K,KOPF J,et al. Deepmvs:Learning multi-view stereopsis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City,UT,USA,2018.
[25]YAO Y,LUO Z,LI S,et al. Recurrent mvsnet for high-resolution multi-view stereo depth inference[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach,CA,USA,2019.
[26]XUE Y,CHEN J,WAN W,et al. Mvscrf:Learning multi-view stereo with conditional random fields[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul,South Kerean,2019.
[27]GU X,FAN Z,ZHU S,et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle,WA,USA,2020.
[28]YANG J,MAO W,ALVAREZ J M,et al. Cost volume pyramid based depth inference for multi-view stereo[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle,WA,USA,2020.
[29]CHEN R,HAN S,XU J,et al. Point-based multi-view stereo network[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul,South Kerean,2019.
[30]TARG S,ALMEIDA D,LYMAN K. Resnet in resnet:Generalizing residual architectures[J]. arXiv Preprint arXiv:1603.08029,2016.
[31]SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv Preprint arXiv:1409.1556,2014.
[32]RONNEBERGER O,FISCHER P,BROX T. U-Net:Convolutional networks for biomedical image segmentation[C]//Interna-tional Conference on Medical Image Computing and Computer-Assisted Intervention. Munich,Germany,2015.
[33]LIU Z,MAO H,WU C Y,et al. A ConvNet for the 2020s[J]. arXiv Preprint arXiv:2201.03545,2022.
[34]LIU Z,LIN Y,CAO Y,et al. Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal,Canada,2021.
[35]YAN J F,WEI Z Z,YI H W,et al. Dense hybrid recurrent multi-view stereo net with dynamic consistency checking[C]//European Conference on Computer Vision. Springer,Cham,2020:674-689.
[36]CHENG S,XU Z,ZHU S,et al. Deep stereo using adaptive thin volume representation with uncertainty awareness[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle,WA,USA,2020.
[37]TRAN M,VO-HO V K,LE N T H. 3DConvCaps:3DUnet with convolutional capsule encoder for medical image segmentation[J]. arXiv Preprint arXiv:2205.09299,2022.
[38]ZHAO Y,BIRDAL T,DENG H,et al. 3D point capsule networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach,CA,USA,2019.
[39]WANG X,GIRSHICK R,GUPTA A,et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City,UT,USA,2018.
[40]HOWARD A G,ZHU M L,CHEN B,et al. MobileNets:Efficient convolutional neural networks for mobile vision applications[J]. arXiv Preprint arXiv:1704.04861,2017.
[41]GALLUP D,FRAHM J M,MORDOHAI P,et al. Real-time plane-sweeping stereo with multiple sweeping directions[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis,Minnesota,USA,2007.
[42]XU N,PRICE B,COHEN S,et al. Deep image matting[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu,HI,USA,2017.
[43]JENSEN R,DAHL A,VOGIATZIS G,et al. Large scale multi-view stereopsis evaluation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus,OH,USA,2014.
[44]TOLA E,STRECHA C,FUA P. Efficient large-scale multi-view stereo for ultra high-resolution image sets[J]. Machine Vision and Applications,2012,23(5):903-920.
[45]CAMPBELL N D F,VOGIATZIS G,HERNÁNDEZ C,et al. Using multiple hypotheses to improve depth-maps for multi-view stereo[C]//European Conference on Computer Vision. Marseille,France,2008:766-779.
[46]GALLIANI S,LASINGER K,SCHINDLER K. Gipuma:Massively parallel multi-view stereo reconstruction[J]. Publikationen der Deutschen Gesellschaft für Photogrammetrie,Fernerkundung und Geoinformation,2016,25:361-369.
[47]FURUKAWA Y,PONCE J. Accurate,dense,and robust multiview stereopsis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,32(8):1362-1376.