参考文献/References:
[1]杨裔. 中央空调节能技术综述[J]. 现代信息技术,2019,3(13):193-194.
[2]SHENG X,SHANG J F,ZHANG J H,et al. An energy-saving based predictive control strategy on central air-conditioning system[C]//Proceedings of 2009 Transmission & Distribution Conference & Exposition:Asia & Pacific. Seoul,Korea:IEEE,2009.
[3]FENG Z X,REN Q C,YU J Q. The optimum start-up of central air-conditioning based on neural network[C]//Procedings of 2013 3rd International Conference on Computer Science and Information Technology. Chengdu,China:IEEE,2010.
[4]计建惠,王可崇.基于Elman网络的空调预冷时间的预测[J]. 微计算机信息,2008,24(13):261-263.
[5]杨建军,何利力.基于长短期记忆网络的工业空调启动时间预测[J]. 软件导刊,2020,19(6):48-52.
[6]李慧,段培永,罗光林.基于数据的空调系统最优启停时间预测[J]. 山东建筑大学学报,2012,27(2):155-159.
[7]朱军,侯振杰,陈树越,等. 深度特征重构与权重分配的交通标志识别算法[J]. 小型微型计算机系统,2019,40(9):1932-1939.
[8]李鸿培,于旸,忽朝俭,等. 2013工业控制系统及其安全性研究报告[R]. 北京:绿盟科技,2013.
[9]SU C,JU S G,LIU Y G,et al. Improving random forest and rotation forest for highly imbalanced datasets[J]. Intelligent Data Analysis,2015,19(6):1409-1432.
[10]CAO X H,LI R J,GE Y M,et al. Densely connected deep random forest for hyperspectral imagery classification[J]. International Journal of Remote Sensing,2019,40(9):3606-3622.
[11]SHAKIBA R,NAJAFIPOUR M R,SELEHI M E. An improved PSO-based path planning algorithm for humanoid soccer playing robots[C]//Proceedings of the 2013 3rd Joint Conference of AI & Robotics and 5th RoboCup Iran Open International Symposium. Tehran,Iran:IEEE,2013.
[12]QIAN W Y,LI M. Convergence analysis of standard particle swarm optimization algorithm and its improvement[J]. Soft Computing,2018,22(12):4047-4070.
[13]HOU G Y,XU Z D,LIU X,et al. Improved particle swarm optimization for selection of shield tunneling parameter values[J]. Computer Modeling in Engineering and Sciences,2019,118(2):317-337.
[14]CHANG W D. An improved PSO algorithm for solving nonlinear programing problems with constrained conditions[J]. International Journal of Modeling,Simulation,and Scientific Computing,2021,12(1):2150001.
[15]王志华,刘绍廷,罗齐.基于改进K-modes聚类的KNN分类算法[J]. 计算机工程与设计,2019,40(8):2228-2234.
[16]SUN J,LANG J,FUJITA H,et al. Imbalanced enterprise credit evaluation with DTE-SBD:Decision tree ensemble based on SMOTE and bagging with differentiated sampling rates[J]. Information Sciences,2018,425:76-91.
[17]ZHANG D H,QIAN L Y,MAO B J,et al. A data-driven design for fault detection of wind turbines using random forests and XGBoost[J]. IEEE Access,2018,6:21020-21031.
[18]TAHMASSEBI A,WENGERT G J,HELBICH T H,et al. Impact of machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy and survival outcomes in breast cancer patients[J]. Investigative Radiology,2019,54(2):110-117.
[19]ZHU M,WU K,ZHOU Y Z,et al. Prediction of cooling moisture content after cut tobacco drying process based on a particle swarm optimization-extreme learning ma-chine algorithm[J]. Mathematical Biosciences and Engineering,2021,18(3):2496-2507.
[20]国家市场监督管理总局,国家标准化管理委员会. 综合能耗计算通则:GB/T 2589-2020[S]. 北京:中国标准出版社,2020.
[21]简毅文,江亿. 住宅供暖空调能耗计算模式的研究[J]. 暖通空调,2005,35(2):11-14.
[22]XU L,HOU L,ZHU Z Y,et al. Midterm prediction of electrical energy consumption for crude oil pipelines using a hybrid algorithm of support vector machine and genetic algorithm[J]. Energy,2021,222(1):119955.
[23]BESROUR A,KSANTINI R. Incremental subclass support vector machine[J]. International Journal on Artificial Intelligence Tools,2019,28(7):1950020.
[24]ALKUBAISI G. The role of ensemble learning in stock market classification model accuracy enhancement based on Naive Bayes Classifiers[J]. International Journal of Statistics and Probability,2020,9(1):1-36.