参考文献/References:
[1]WU H,SHAHIDEHPOUR M,ALABDULWAHAB A,et al. Thermal generation flexibility with ramping costs and hourly demand response in stochastic security-constrained scheduling of variable energy sources[J]. IEEE Transactions on Power Systems,2015,30(6):2955-2964.
[2]鲁宗相,李海波,乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化,2016,40(13):147-158.
[3]HAO H,SANANDAJI B M,POOLLA K,et al. Aggregate flexibility of thermostatically controlled loads[J]. IEEE Transactions on Power Systems,2015,30(1):189-198.
[4]周明,李琰,李庚银.基于随机生产模拟的日前发电——备用双层决策模型[J]. 电网技术,2019,43(5):1606-1613.
[5]陈伟伟,张增强,张高航,等. 计及需求响应及抽水蓄能的含风电系统鲁棒机组组合[J]. 电力工程技术,2022,41(2):75-82.
[6]宋梦,高赐威,苏卫华. 面向需求响应应用的空调负荷建模及控制[J]. 电力系统自动化,2016,40(14):158-167.
[7]杨济如,石坤,崔秀清,等. 需求响应下的变频空调群组削峰方法[J]. 电力系统自动化,2018,42(24):44-52.
[8]MATHIEU J,KAMGARPOUR M,LYGEROS J,et al. Arbitraging intraday wholesale energy market prices with aggregations of thermostatic loads[J]. IEEE Transactions on Power Systems,2015,30(2):763-772.
[9]LU N. An evaluation of the HVAC Load Potential for Providing Load Balancing Service[J]. IEEE Transactions Smart Grid,2012,3(3):1263-1270.
[10]CALLAWAY D S. Tapping the energy storage potential in electric loads to deliver load following and regulation with application to wind energy[J]. Energy Conversion and Management,2009,50(5):1389-1400.
[11]JEROME H K,DARREN R. A simplified thermal model to support analysis of urban resource flows[J]. Energy and Buildings,2007,39(4):445-453.
[12]王栋,徐青山,陈亮,等. 参与调峰控制的空调负荷建模仿真研究[J]. 电力工程技术,2018,37(6):80-86.
[13]ZHANG W,LIAN J,CHANG C,et al. Aggregated modeling and control of air conditioning loads for demand response[J]. IEEE Transactions on Power Systems,2013,28(4):4655-4664.
[14]SANANDAJI B M,VINCENT T,POOLLA K. Ramping rate flexibility of residential HVAC loads[J]. IEEE Trans Sustainable Energy,2016,7(2):865-874.
[15]BASHASH S,FATHY H. Modeling and control of aggregate air conditioning loads for robust renewable power management[J]. IEEE Transactions Control System Technology,2013,21(4):1318-1327.
[16]MAHDAVI N,BRASLAVSKY J,PERFUMO C. Mapping the effect of ambient temperature on the power demand of populations of air conditioners[J]. IEEE Transactions on Smart Grid,2018,9(3):1540-1550.
[17]MAHDAVI N,BRASLAVSKY J,SERON M,et al. Model predictive control of distributed air conditioning loads to compensate fluctuations in solar power[J]. IEEE Transactions on Smart Grid,2017,8(6):3055-3065.
[18]HUI H,DING Y,CHEN T,et al. Dynamic and stability analysis of the power system with the control loop of inverter air conditioners[J]. IEEE Transactions on Industrial Electronics,2021,68(3):2725-2736.
[19]JIANG A,WEI H,DENG J,et al. Cloud-edge cooperative model and closed-loop control strategy for the price response of large-scale air conditioners considering data packet dropouts[J]. IEEE Transactions Smart Grid,2020,11(5):4201-4211.
[20]宋爽,李中伟,刘勇,等. 住宅小区负荷群用电优化策略研究[J]. 电测与仪表,2021,58(8):10.
[21]LI Y W,SHEN Y W,ZHOU L,et al. Progressive time-differentiated peak pricing(PTPP)for aggregated air-conditioning load in demand response programs[J]. International Transactions on Electrical Energy Systems,2019,29(1):e2664.
[22]HONG Y,CHANG W,CHANG Y,et al. Optimal scheduling of energy consumptions for air conditioners in a smart community with renewables[J]. 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference(APPEEC),2016:385-391.
[23]WANG J Y,CHEN X Y,YU K,et al. Optimal scheduling of air conditioning loads by aggregator under dynamic price[J]. IEEE Conference on Energy Internet and Energy System Integration,2019:191-195.
[24]王蓓蓓,亢丽君,苗曦云,等. 考虑可信度的新能源及需求响应参与英美容量市场分析及思考[J]. 电网技术,2022,46(4):1-16.