参考文献/References:
[1]吴陈铭,戴澄恺,王昌凌,等. 多自由度3D打印技术研究进展综述[J]. 计算机学报,2019,42(9):1918-1938.
[2]叶福兴,王永辉,娄智. 激光增材制造过程中激光与粉末的相互作用研究现状[J]. 中国表面工程,2021,34(2):1-12.
[3]WU D,CHEN H B,HUANG Y M,et al. Monitoring of weld joint penetration during variable polarity plasma arc welding based on the keyhole characteristics and PSO-ANFIS[J]. Journal of Materials Processing Technology,2017,239:113-124.
[4]CHEN Y H,CHEN B,YAO Y Z,et al. A spectroscopic method based on support vector machine and artificial neural network for fiber laser welding defects detection and classification[J]. NDT & E International,2019,108:102176.
[5]VANDONE A,BARALDO S,VALENTE A,et al. Vision-based melt pool monitoring system setup for additive manufacturing[J]. Procedia CIRP,2019,81:747-752.
[6]ZHANG Z F,WEN G R,CHEN S B. Audible sound-based intelligent evaluation for aluminum alloy in robotic pulsed GTAW:Mechanism,feature selection,and defect detection[J]. IEEE Transactions on Industrial Informatics,2017,14(7):2973-2983.
[7]李子晗,忻建文,肖笑,等. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报,2021,57(5):693-702.
[8]MAZZOLENI L,DEMIR A G,CAPRIO L,et al. Real-time observation of melt pool in selective laser melting:Spatial,temporal,and wavelength resolution criteria[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(4):1179-1190.
[9]刘晓刚,闫红方,张荣. 基于形态学多尺度多结构的熔池图像边缘检测[J]. 热加工工艺,2019,48(5):216-219.
[10]杨启,田虎成,闫昭华,等. 激光近净成形中熔池宽度实时监控系统的研究[J]. 激光与红外,2019,49(9):1060-1067.
[11]LI X B,LI T,SHI B W,et al. The influence of substrate tilt angle on the morphology of laser cladding layer[J]. Surface and Coatings Technology,2020,391:125706.
[12]顾振杰,雷剑波,张传鹏,等. 镍硅硼合金粉末激光熔覆中熔池光谱检测分析[J]. 中国激光,2014,41(11):95-102.
[13]雷凯云,秦训鹏,刘华明,等. 基于神经网络的宽带激光熔覆熔池特征参数预测[J]. 光电子·激光,2018,29(11):1212-1220.
[14]YANG Z,LU Y,YEUNG H,et al. Investigation of deep learning for real-time melt pool classification in additive manufacturing[C]//Proceedings of the 2019 IEEE 15th International Conference on Automation Science and Engineering(CASE). Vancouver,Canada:IEEE,2019.
[15]LU J,HE H Y,SHI Y M,et al. Quantitative prediction for weld reinforcement in arc welding additive manufacturing based on molten pool image and deep residual network[J]. Additive Manufacturing,2021,41:101980.
[16]王仁杰,史圣泰. 基于机器视觉的增材制造激光熔覆熔池边缘检测和行为参数分析[J]. 中国金属通报,2021(13):209-210.
[17]CAI W,JIANG P,SHU L S,et al. Real-time identification of molten pool and keyhole using a deep learning-based semantic segmentation approach in penetration status monitoring[J]. Journal of Manufacturing Processes,2022,76:695-707.
[18]JIAO W H,WANG Q Y,CHENG Y C,et al. End-to-end prediction of weld penetration:A deep learning and transfer learning based method[J]. Journal of Manufacturing Processes,2021,63(2):191-197.
[19]ZHANG Z H,LI B,ZHANG W F,et al. Real-time penetration state monitoring using convolutional neural network for laser welding of tailor rolled blanks[J]. Journal of Manufacturing Systems,2020,54:348-360.
[20]ZHANG Y X,YOU D Y,GAO X D. Welding defects detection based on deep learning with multiple optical sensors during disk laser welding of thick plates[J]. Journal of Manufacturing Systems,2019,51:87-94.
[21]XU Y L,FANG G,LV N. Computer vision technology for seam tracking in robotic GTAW and GMAW[J]. Robotics and Computer-Integrated Manufacturing,2015,32:25-36.
[22]LIN T Y,DOLLAR P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu,USA:IEEE,2017.
[23]HOWARD A,SANDLER M,CHEN B,et al. Searching for MobileNetV3[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision(ICCV). Seoul,Korea:IEEE,2020.
[24]ZHANG M X,WANG Z J,SUN T Z,et al. Salient object detection by pyramid networks with gating[C]//Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics(ROBIO). Dali,China:IEEE,2019.
[25]HE K M,ZHANG X Y,REN S Q,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas,USA:IEEE,2016.
[26]SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv Preprint arXiv:1409.1556,2014.
[27]BOCHKOVSKIY A,WANG C Y,LIAO H Y M. Yolov4:Optimal speed and accuracy of object detection[J/OL]. arXiv Preprint arXiv:2004.10934,2020.
[28]CHEN L C,ZHU Y K,PAPANDREOU G,et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision(ECCV). Munich,Germany:Springer,2018.
[29]ZHAO H S,SHI J P,QI X J,et al. Pyramid Scene Parsing Network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu,USA:IEEE,2017.
[30]RONNEBERGER O,FISCHER P,BROX T. U-Net:Convolutional Networks for Biomedical Image Segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention(MICCAI). Munich,Germany:MICCAI,2015.
[31]张亚红,覃科. 一种形态学与Canny算子融合的焊接熔池边缘检测算法[J]. 桂林航天工业学院学报,2017,22(1):9-13.