参考文献/References:
[1]BORTFELDT A,WINTER T. A genetic algorithm for the two-dimensional knapsack problem with rectangular pieces[J]. International Transactions in Operational Research,2009,16(6):685-713.
[2]BIRGIN E G,LOBATO R D,MORABITO R. Generating unconstrained two-dimensional non-guillotine cutting patterns by a recursive partitioning algorithm[J]. Journal of the Operational Research Society,2012,63(2):183-200.
[3]WEI L J,LIM A. A bidirectional building approach for the 2D constrained guillotine knapsack packing problem[J]. European Journal of Operational Research,2015,242(1):63-71.
[4]WEI L J,HU Q,LIM A,et al. A best-fit branch-and-bound heuristic for the unconstrained two-dimensional non-guillotine cutting problem[J]. European Journal of Operational Research,2018,270(2):448-474.
[5]季君,邢斐斐,黄敦华,等. 一种分阶段式匀质块最优矩形件排样方法[J]. 锻压技术,2021,46(2):46-51.
[6]董德威,颜云辉,王展. 存在表面缺陷原材料的矩形件优化排样问题研究[J]. 东北大学学报(自然科学版),2012,33(9):1323-1326.
[7]AFSHARIAN M,NIKNEJAD A,WÄSCHER G. A heuristic,dynamic programming-based approach for a two-dimensional cutting problem with defects[J]. OR Spectrum,2014,36(4):971-999.
[8]唐伟萍,王坤,黄欣. 矩形件二维正交排样的一种混合遗传算法[J]. 锻压技术,2021,46(10):106-111.
[9]BEAN J C. Genetic algorithms and random keys for sequencing and optimization[J]. ORSA Journal on Computing,1994,6(2):154-160.
[10]CARRABS F. A biased random-key genetic algorithm for the set orienteering problem[J]. European Journal of Operational Research,2021,292(3):830-854.
[11]ANDRADE C E,TOSO R F,GONÇALVES J F,et al. The multi-parent biased random-key genetic algorithm with implicit path-relinking and its real-world applications[J]. European Journal of Operational Research,2021,289(1):17-30.
[12]PINTO B Q,RIBEIRO C C,ROSSETI I,et al. A biased random-key genetic algorithm for routing and wavelength assignment under a sliding scheduled traffic model[J]. Journal of Global Optimization,2020,77(4):949-973.
[13]OLIVEIRA B B,CARRAVILLA M A,OLIVEIRA J F,et al. A C++ application programming interface for co-evolutionary biased random-key genetic algorithms for solution and scenario generation[J]. Optimization Methods and Software,2021,37(3):1065-1086.
[14]FORREST S. Genetic algorithms[J]. ACM Computing Surveys(CSUR),1996,28(1):77-80.
[15]JENNINGS P C,LYSGAARD S,HUMMELSHJ J S,et al. Genetic algorithms for computational materials discovery accelerated by machine learning[J]. NPJ Computational Materials,2019(1):746-751.
[16]LAI K K,CHAN J W M. Developing a simulated annealing algorithm for the cutting stock problem[J]. Computers & Industrial Engineering,1997,32(1):115-127.
[17]CARNIERI C,MENDOZA G A,LUPPOLD W G. Optimal cutting of dimension parts from lumber with a defect:a heuristic solution procedure[J]. Forest Products Journal,1993,43(9):66-75.
[18]王洁,陶涛,陈星艳,等. 蚁群算法在定制家具矩形零件排样中的应用[J]. 林业工程学报,2022,7(1):192-196.
[19]王静静,瞿少成,李科林. 一种基于并行交叉遗传算法的二维不规则排样问题求解[J]. 计算机应用与软件,2020,37(7):188-193.
[20]VIANNA A C G,ARENALES M N. O problema de corte de placas defeituosas[J]. Pesquisa Operacional,2006,26:185-202.
[21]NEIDLEIN V,VIANNA A C G,ARENALES M M,et al. The two-dimensional,rectangular,guillotineable-layout cutting problem with a single defect[R]. Magdeburg:Otto-von-Guericke University Magdeburg,2008.
[22]AFSHARIAN M,NIKNEJAD A,WÄSCHER G. A heuristic,dynamic programming-based approach for a two-dimensional cutting problem with defects[J]. OR Spectrum,2014,36(4):971-999.