[1]刘泽霄,吴 薇,翟 翀,等.预冷除湿/预热再生型溶液除湿空调系统实验研究[J].南京师范大学学报(工程技术版),2024,24(01):001-9.[doi:10.3969/j.issn.1672-1292.2024.01.001]
 Liu Zexiao,Wu Wei,Zhai Chong,et al.Experimental Study on Performance of Liquid Desiccant Air Conditioning System with Precooling Dehumidification/Preheating Regeneration[J].Journal of Nanjing Normal University(Engineering and Technology),2024,24(01):001-9.[doi:10.3969/j.issn.1672-1292.2024.01.001]
点击复制

预冷除湿/预热再生型溶液除湿空调系统实验研究
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
24卷
期数:
2024年01期
页码:
001-9
栏目:
动力工程及工程热物理
出版日期:
2024-03-15

文章信息/Info

Title:
Experimental Study on Performance of Liquid Desiccant Air Conditioning System with Precooling Dehumidification/Preheating Regeneration
文章编号:
1672-1292(2024)01-0001-09
作者:
刘泽霄吴 薇翟 翀许梦杰韩海斌
(南京师范大学能源与机械工程学院,江苏 南京 210023)
Author(s):
Liu ZexiaoWu WeiZhai ChongXu MengjieHan Haibin
(School of Energy and Mechanical Engineering,Nanjing Normal University,Nanjing 210023,China)
关键词:
溶液除湿空调系统预冷除湿预热再生热泵低浓度溶液
Keywords:
solution dehumidification air conditioning systemprecooling dehumidificationpreheating regenerationheat pumplow-concentration solution
分类号:
TU834.9
DOI:
10.3969/j.issn.1672-1292.2024.01.001
文献标志码:
A
摘要:
提出了一种预冷除湿/预热再生型溶液除湿空调系统,利用热泵的低品位热能预处理溶液,同时使用温度18 ℃、浓度27%的低温低浓度溶液作为除湿溶液. 通过实验研究了除湿侧溶液预冷、再生侧溶液预热后对系统除湿/再生性能的影响,以及系统采用低温低浓度溶液后整体性能的变化规律. 结果表明:(1)随着预冷后除湿溶液温度降低,空气含湿量差和除湿效率分别提升16.3%和6.4%; 随着溶液流量的提升,空气含湿量差和除湿效率分别上升22%和20%.(2)随着预热后再生温度的升高,再生量由0.132 g/s增加到0.414 g/s,再生热效率由0.196增加到了0.397. 预热后再生溶液流量上升时,溶液再生量提升近13%; 再生热效率提升6%左右.(3)相较于常温高浓度溶液,系统采用低温低浓度溶液后除湿能力基本不变,除湿前后空气的温降增大,运行成本降低了23%. 研究结果为高温高湿地区溶液除湿系统整体性能提升提供了可行的解决方案.
Abstract:
In this paper,a novel precooled and preheated dehumidification air conditioning system is proposed. This system utilizes the low-grade thermal energy from a heat pump for solution preprocessing and employs a solution characterized by a temperature of 18 ℃ and a concentration of 27% for dehumidification. Experimental investigations are conducted to assess the effects of precooling/preheating the dehumidification/regeneration liquid on the dehumidification/regeneration performance of the system. Additionally,the system's comprehensive performance alterations post the implementation of a low-temperature and low-concentration solution are evaluated. Key findings include:(1)An decrease in temperature of the liquid desiccant after precooling results in a 16.3% rise in difference in air moisture content and a 6.4% enhancement in dehumidification efficiency. Concurrently,an escalation in the solution flow rate leads to a 22% and 20% increase in the difference in air moisture content and dehumidification efficiency,respectively.(2)An elevation in temperature of the regeneration solution increases after preheating causes the regeneration amount to surge from 0.132 g/s to 0.414 g/s,and the regeneration thermal efficiency to augment from 0.196 to 0.397. An increase in the inlet solution flow rate of the regenerator results in nearly a 13% rise in the regeneration amount of the solution and approximately 6% enhancement in regeneration thermal efficiency.(3)Relative to high-concentration solutions at ambient conditions,the dehumidification capability of the system remains largely consistent post the adoption of low-temperature and low-concentration solutions. There is a noticeable increase in the temperature differential of the air pre and post-dehumidification,which couples with a marked reduction in the operating cost. These findings provide a feasible solution for improving the overall performance of solution dehumidification systems in high-temperature and high humidity areas.

参考文献/References:

[1]全成,赵玉娇,陈柳. 太阳能驱动闭式转轮除湿空调系统性能研究[J]. 制冷学报,2023,49(1):79-89.
[2]李士强. 一种基于溶液除湿的直接蒸发冷却空调系统实验研究[D]. 南京:东南大学,2012.
[3]AUDAH N,GHADDAR N,GHALI K. Optimized solar-powered liquid desiccant system to supply building fresh water and cooling needs[J]. Applied Energy,2011,88(11):3726-3736.
[4]KATEJANEKARN T,CHIRARATTANANON S,KUMAR S. An experimental study of a solar-regenerated liquid desiccant ventilation pre-conditioning system[J]. Solar Energy,2009,83(6):920-933.
[5]王静远,吴薇,吴翔宇,等. 带预热的内热型溶液再生器再生性能研究[J]. 南京师范大学学报(工程技术版),2019,19(2):25-32,42.
[6]折晓会. 溶液除湿蒸发过冷复合制冷系统理论与实验研究[D]. 南京:东南大学,2016.
[7]蒋樾,陈观生,刘良德,等. 太阳能溶液再生器吸热再生性能研究[J]. 广东工业大学学报,2020,37(4):79-83.
[8]SULTAN G I,AHMED M H,SULTAN A A. The effect of inlet parameters on the performance of packed tower-regenerator[J]. Renewable Energy,2002,26(2):271-283.
[9]曾台烨,张小松,陈瑶. 利用冷凝热再生低浓度除湿溶液的实验研究[J]. 制冷学报,2018,39(1):76-82.
[10]GE G M,MOGHADDAM D G,AHMED H,et al. Comparison of experimental data and a model for heat and mass transfer performance of a liquid-to-air membrane energy exchanger(LAMEE)when used for air dehumidification and salt solution regeneration[J]. International Journal of Heat and Mass Transfer,2014,68:119-131.
[11]王琴,吴薇,顾陈杰,等. 冷凝热分级利用对再生过程的影响[J]. 南京师范大学学报(工程技术版),2017,17(1):58-65.
[12]SI L,CHENG F,WANG W,et al. Research on solar-driven interfacial evaporation regeneration performance of different solutions for liquid desiccant cooling system[J]. International Journal of Heat and Mass Transfer,2023,213:124354.
[13]吴薇,王玲珑,苏鹏飞,等. 不同蓄能材料的太阳能热泵系统性能对比[J]. 农业工程学报,2014,30(12):184-191.
[14]彭冬根,罗丹婷,程小松. 热回收型太阳能分级溶液集热/再生系统模型及环境适用性分析[J]. 化工学报,2017,68(8):3242-3249.
[15]周苇杭,殷勇高,程小松,等. 低位热驱动的工业建筑除湿降温空调系统应用研究[J]. 制冷学报,2022,43(5):10-15.
[16]孙健,秦宇,郝俊红,等. 基于工业余热的高温空气源耦合热泵循环性能分析[J]. 综合智慧能源,2023,45(7):40-47.
[17]TOMAS V,QU M,WANG L S,et al. Review of liquid desiccant air dehumidification systems coupled with heat pump:System configurations,component design,and performance[J]. Energy & Buildings,2023,279:112655.
[18]MAHMOUD E B,AHMED S,ABD A E,et al. Performance evaluation of an innovative liquid desiccant air-conditioning system directly integrating a heat pump with two membrane energy exchangers[J]. Energy Conversion and Management,2023,293:117508.
[19]彭冬根,李寅蒂,张振涛. 太阳能—地热能复合利用的溶液除湿空调系统研究[J]. 太阳能学报,2023,44(3):360-367.
[20]李寅蒂. 基于溶液除湿和太阳能—地热能复合能源的温湿度独立控制系统模拟研究[D]. 江西:南昌大学,2022.
[21]蔡新国. 基于溶液除湿的太阳能—地源热泵复合空调系统研究[D]. 山东:山东建筑大学,2015.
[22]NAIK B K,MAHENDRA C,SANJEEV P,et al. Performance assessment of waste heat/solar driven membrane-based simultaneous desalination and liquid desiccant regeneration system using a thermal model and KNN machine learning tool[J]. Desalination,2021,505:114980.
[23]吴炜. 溶液除湿空调机组的实验与理论研究[D]. 扬州:扬州大学,2023.
[24]陈瑶. 基于非常温溶液除湿的新型复合型空调系统研究[D]. 南京:东南大学,2016.
[25]柳建华,邬志敏,丁育红,等. 液体除湿空调系统的除湿器性能试验[J]. 流体机械,2005(12):61-64.
[26]梁泽德,李清清. 基于自然冷源驱动和太阳能再生的溶液除湿空调系统研究[J]. 太阳能学报,2021,42(6):211-215.
[27]严磊,李文正,吴薇,等. 与热泵结合的预冷型溶液除湿空调系统性能研究[J]. 南京师范大学学报(工程技术版),2021,21(2):1-8.
[28]李永存. 无霜型空气源热泵系统的理论与实验研究[D]. 杭州:浙江大学,2011.
[29]FUMO N,GOSMAMI D Y. Study of an aqueous lithium chloride desiccant system:air dehumidifification and desiccant regeneration[J]. Solar Energy,2002,72(4):351-361.
[30]刘晓华,易晓勤,江亿. 两种常用液体吸湿剂传质性能的比较[J]. 化工学报,2009,60(3):567-573.
[31]邵彬,殷勇高,张小松. 压缩空气溶液除湿中不同除湿剂除湿性能比较[J]. 化工学报,2016,67(9):3566-3573.
[32]孙健,宫小龙,施明恒. 除湿溶液蒸汽压的研究[J]. 制冷学报,2004(1):27-30.
[33]ZUBER A,CHECONI R F,MATHEW R,et al. Thermodynamic properties of 1:1 salt aqueous solutions with the electrolattice equation of state[J]. Oil & Gas Science And Technology,2013,68(2):255-270.
[34]胡凯,郭春梅,杨红,等. 运行参数对内热型板式除湿溶液再生装置的性能影响试验研究[J]. 流体机械,2022,50(1):22-28,52.
[35]彭冬根,汤余珍,李寅蒂. 新型溶液除湿新风系统解析模型及NTU性能分析[J]. 化学工程,2023,51(4):79-83,94.
[36]CHE C W,YIN Y G,ZHANG F. A modified LIQUAC model for prediction of the vapor pressure of single liquid desiccant at high concentration and regeneration temperature[J]. Fluid Phase Equilibria,2020,514:112558.
[37]童守宝,车春文,殷勇高. CaBr2溶液除湿再生性能及腐蚀性实验研究[J]. 东南大学学报(自然科学版),2022,52(3),425-432.
[38]刘松松. 热泵预热型溶液除湿空调系统研究[D]. 南京:南京师范大学,2019.
[39]刘拴强,刘晓华,江亿. 溶液除湿空调系统模拟方法及应用[J]. 中国勘察设计,2006(5),49-52.
[40]CHENG F,WU Y,LI X. Research on regeneration performance of the solar steam method for absorption air-conditioning system[J]. Applied Thermal Engineering,2020,178:115576.
[41]DONG W W,QI C,YUAN Z G,et al. Study on the performance of solar interfacial evaporation for high-efficiency liquid desiccant regeneration[J]. Energy,2022,257:124721.
[42]DU B Y,ZHANG G K,XIE J C,et al. Experimental analysis of an innovative internally cooled dehumidifier[J]. Journal of Building Engineering,2023,80:108057.
[43]CHUA J Z,ZHUA J,BAIA H Y,et al,Experimental study of a membrane-based liquid desiccant dehumidifier based on internal air temperature variation[J]. Applied Thermal Engineering,2019,159:113936.
[44]SONOWAL J,MAHAJAN M,MUTHUKUMAR P,et al. Performance analysis of liquid desiccant dehumidifier system for various packing density[J]. Thermal Science and Engineering Progress,2023,38:101663.
[45]李春林. 液体除湿系统研究与应用[D]. 陕西:西北工业大学,2006.
[46]李春林,吴安民,张鹤飞. 带冷却液体除湿系统性能分析的简化方法[J]. 太阳能学报,2007,28(9):1030-1033.
[47]JEON W J,HAM M G,LEE J G,et al,Performance evaluation of regeneration of high-concentration liquid desiccant using direct contact membrane distillation[J]. Separation and Purification Technology,2024,330:125537.
[48]王琴,吴薇,刘松松,等. 内热型与绝热型溶液再生器再生过程性能[J]. 化工学报,2016,67(增刊1):186-194.
[49]刘晓华,李震,张涛,溶液除湿[M]. 北京:中国建筑工业出版社,2014.
[50]YU G,LIN L. Performance characteristics of a compact self-circulating liquid desiccant air dehumidification system coupled with a heat pump:A comprehensive parametric study[J]. Applied Thermal Engineering,2024,236:121640.

备注/Memo

备注/Memo:
收稿日期:2023-10-12.
基金项目:江苏省高等学校基础科学研究面上项目(23KJB470027)、南京师范大学引进人才科研启动基金项目(184080H201B12).
通讯作者:吴薇,副教授,研究方向:制冷与节能技术. E-mail:wuwei@njnu.edu.cn
更新日期/Last Update: 2024-03-15