[1]陈雨润,席剑飞,李 广,等.不同低温等离子体反应器降解VOCs的研究进展[J].南京师范大学学报(工程技术版),2024,24(01):010-17.[doi:10.3969/j.issn.1672-1292.2024.01.002]
 Chen Yurun,Xi Jianfei,Li Guang,et al.Research Progress on Degradation of VOCs by Non-Thermal Plasma Under Different Reactors[J].Journal of Nanjing Normal University(Engineering and Technology),2024,24(01):010-17.[doi:10.3969/j.issn.1672-1292.2024.01.002]
点击复制

不同低温等离子体反应器降解VOCs的研究进展
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
24卷
期数:
2024年01期
页码:
010-17
栏目:
动力工程及工程热物理
出版日期:
2024-03-15

文章信息/Info

Title:
Research Progress on Degradation of VOCs by Non-Thermal Plasma Under Different Reactors
文章编号:
1672-1292(2024)01-0010-08
作者:
陈雨润席剑飞李 广陆 洋顾中铸蔡 杰
(南京师范大学能源与机械工程学院,江苏 南京 210023)
Author(s):
Chen YurunXi JianfeiLi GuangLu YangGu ZhongzhuCai Jie
(School of Energy and Mechanical Engineering,Nanjing Normal University,Nanjing 210023,China)
关键词:
低温等离子体挥发性有机物反应器降解催化
Keywords:
non-thermal plasmaVOCsreactorsdegradationcatalysis
分类号:
X51
DOI:
10.3969/j.issn.1672-1292.2024.01.002
文献标志码:
A
摘要:
挥发性有机物(VOCs)可对人体及自然环境造成严重危害,低温等离子体技术适用范围广且能在常温常压下分解VOCs. 对不同类型的低温等离子体反应器进行分类,并关注其对降解效果的影响,结果表明:在配电参数和配气参数不变的情况下,线-筒式电晕放电反应器和电极的直径、线-板式电晕放电反应器的线线间距和线板间距对降解效率影响较大; 圆筒式介质阻挡放电反应器在性能上优于平板式介电阻挡放电反应器; 等离子体内催化反应器降解VOCs的能力优于等离子体后催化反应器,但在副产物控制方面不如等离子体后催化反应器; 催化剂的选择在VOCs的降解中有重要影响. 最后,对等离子体反应器的发展进行了展望.
Abstract:
Volatile organic compounds(VOCs)can do great harm to human body and natural environment. Non-thermal plasma technology has a wide scope of application and can remove VOCs under normal temperature and pressure. Different types of non-thermal plasma reactor are classified in this review and their effect on degradation is also concerning. The results show that while keeping the distribution parameters and gas distribution parameters constant,the diameter of the wire-cylinder corona discharge reactor and electrode,the distance between the wires and wires of the wire plate corona discharge reactor,and the spacing between wire boards has a significant impact on degradation efficiency. In the dielectric barrier discharge reactor,the cylindrical type is superior to the flat type in performance. In-plasma catalysis reactor is superior to post-plasma catalysis reactor in the ability of VOCs removal,but inferior to post plasma catalysis reactor in by-products control. It is very significant to choose suitable catalyst when removing VOCs. The future development is prospected according to the advantages and disadvantages of different plasma reactors in the end of this review.

参考文献/References:

[1]MU Y B,WILLIAMS P T. Recent advances in the abatement of volatile organic compounds(VOCs)and chlorinated-VOCs by non-thermal plasma technology:A review[J]. Chemosphere,2022,308:136481.
[2]SANTOS C A,PHUONG N H,PARK M J,et al. Decomposition of indoor VOC pollutants using non-thermal plasma with gas recycling[J]. Korean Journal of Chemical Engineering,2020,37:120-129.
[3]SCHMIDT M,KETTLITZ M,KOLB J F. How activated carbon improves the performance of non-thermal plasma removing methyl ethyl ketone from a gas stream[J]. Cleaner Engineering and Technology,2021,4:100234.
[4]DAHIRU U H,SALEEM F,AL-SUDANI F T,et al. Decomposition of benzene vapour using non-thermal plasmas:The effect of moisture content on eliminating solid residue[J]. Journal of Environmental Chemical Engineering,2022,10(3):107767.
[5]尚超,韦献革,白敏冬,等. 低温等离子体催化降解烟气中甲苯的研究[J]. 中国环境科学,2020,40(9):3714-3720.
[6]SHI X J,LIANG W J,YIN G B,et al. Effect of the factors on the mixture of toluene and chlorobenzene degradation by non-thermal plasma[J]. Journal of Environmental Chemical Engineering,2022,10(6):108927.
[7]吴文杰. 低温等离子体-催化剂系统协同降解有机污染物的应用和机理研究[D]. 上海:华东师范大学,2022.
[8]张硕. 低温等离子体协同Mn基催化降解涂装废气的研究[D]. 沈阳:沈阳工业大学,2019.
[9]朱希峰. 介质阻挡放电低温等离子体脱除挥发性有机物的研究[D]. 北京:华北电力大学,2021.
[10]韩丰磊,季纯洁,张子琦,等. 低温等离子体协同催化技术处理VOCs研究综述[J]. 洁净煤技术,2022,28(2):23-31.
[11]ZHANG H,MA D Y,QIU R L,et al. Non-thermal plasma technology for organic contaminated soil remediation:A review[J]. Chemical Engineering Journal,2017,313:157-170.
[12]XIAO G,XU W P,WU R B,et al. Non-thermal plasmas for VOCs abatement[J]. Plasma Chemistry and Plasma Processing,2014,34(5):1033-1065.
[13]林云琴,林和健,王德汉. 低温等离子体技术及其在VOCs处理中的应用[J]. 城市环境与城市生态,2005,18(5):26-29.
[14]SCHIAVON M,TORRETTA V,CASAZZA A,et al. Non-thermal plasma as an innovative option for the abatement of volatile organic compounds:A review[J]. Water,Air,& Soil Pollution,2017,228(10):388.
[15]那刚. 线筒式脉冲电晕放电对混合VOCs降解的研究[D]. 大连:大连理工大学,2010.
[16]HARADA N,MATSUYAMA T,YAMAMOTO H. Decomposition of volatile organic compounds by a novel electrode system integrating ceramic filter and SPCP method[J]. Journal of Electrostatics,2007,65(1):43-53.
[17]聂勇,李伟,施耀,等. 等离子体反应器的改进及其与脉冲电源间的匹配[J]. 电工电能新技术,2004,23(2):64-68.
[18]ZHAO L,LUO Z Y,XUAN J Y,et al. Study of geometry structure on a wire-plate pulsed corona discharge reactor[J]. IEEE Transactions on Plasma Science,2012,40(3):802-810.
[19]MA Y C,TIAN Y X,ZENG Y X,et al. Plasma synthesis of ammonia in a tangled wire dielectric barrier discharge reactor:Effect of electrode materials[J]. Journal of the Energy Institute,2021,99:137-144.
[20]LI S J,DAND X Q,YU X,et al. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement:A review[J]. Chemical Engineering Journal,2020,388:124275.
[21]YU H,HU W,HE J,et al. Decomposition efficiency and aerosol by products of toluene,ethyl acetate and acetone using dielectric barrier discharge technique[J]. Chemosphere,2019,237:124439.
[22]赵琼. 低温等离子体降解VOCs的DBD反应器优化探索和产物分析[D]. 上海:东华大学,2017.
[23]马天鹏. 低温等离子体高效降解VOCs技术的探索研究[D]. 上海:东华大学,2019.
[24]SINGH N. Scale-up of a dielectric-barrier-discharge plasma reactor and toluene removal efficiency[D]. Oklahoma,USA:Oklahoma State University,2007.
[25]NIU G H,GUO G M,TANG J,et al. Design and electrical analysis of multi-electrode cylindrical dielectric barrier discharge plasma reactor[J]. IEEE Transactions on Plasma Science,2019,47(1):419-426.
[26]LIU Z Y,WANG Y F,ZHANG G,et al. Preparation of graphene-based catalysts and combined DBD reactor for VOC degradation[J]. Environmental Science and Pollution Research,2022,29:51717-51731.
[27]石秀娟,梁文俊,尹国彬,等. 低温等离子体协同Mn基催化剂降解氯苯研究[J]. 化工学报,2022,73(10):4472-4483.
[28]CHANG Z,WANG C,ZHANG G. Progress in degradation of volatile organic compounds based on low-temperature plasma technology[J]. Plasma Processes and Polymers,2020,17(4):e1900131.
[29]KIM H H,KIM J H,OGATA A. Microscopic observation of discharge plasma on the surface of zeolites supported metal nanoparticles[J]. Journals of Physics D Applied Physics: A Europhysics Journal,2009,42(13):135210.
[30]KIM H H,OGATA A. Interaction of nonthermal plasma with catalyst for the air pollution control[J]. International Journal of Plasma Environment Science & Technology,2012,6(1):43-48.
[31]HUANG R,LU M J,WANG P T,et al. Enhancement of the non-thermal plasma-catalytic system with different zeolites for toluene removal[J]. RSC Advances,2015,5(88):72113-72120.
[32]ZHANG Y R,VAN LAER K,NEYTS E C,et al. Can plasma be formed in catalyst pores?A modeling investigation[J]. Applied Catalysis B:Environmental,2016,185:56-67.
[33]AN H T Q,HUU T P,VAN T L,et al. Application of atmospheric non thermal plasma-catalysis hybrid system for air pollution control:Toluene removal[J]. Catalysis Today,2011,176(1):474-477.
[34]刘鑫. 低温等离子体催化协同降解混合VOCs(甲苯、丙酮及乙酸乙酯)的研究[D]. 上海:东华大学,2022.
[35]WANG B F,XU X X,XU W C,et al. The mechanism of non-thermal plasma catalysis on volatile organic compounds removal[J]. Catalysis Surveys from Asia,2018,22(2):73-94.
[36]SULTANA S,VANDENBROUCKE A M,MORA M,et al. Post plasma-catalysis for trichloroethylene decomposition over CeO2 catalyst:Synergistic effect and stability test[J]. Applied Catalysis B:Environmental,2019,253:49-59.
[37]胡志军,王志良. 脉冲电晕低温等离子体协同负载型催化剂降解乙硫醇[J]. 化工环保,2023,43(1):79-86.
[38]张硕,梁吉艳,沈欣军,等. DDBD协同MnOx催化氧化降解低浓度甲苯[J]. 环境工程,2019,37(10):148-152.
[39]LEE J E,OK Y S,TSANG D C W,et al. Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes:A critical review[J]. Science of the Total Environment,2020,719:137405.
[40]CHANG T,MA C L,SHEN Z X,et al. Mnbased catalysts for post non-thermal plasma catalytic abatement of VOCs:A review on experiments,simulations and modeling[J]. Plasma Chemistry and Plasma Processing,2021,41(5):1239-1278.
[41]QU M M,CHENG Z W,SUN Z R,et al. Non-thermal plasma coupled with catalysis for VOCs abatement:A review[J]. Process Safety and Environmental Protection,2021,153:139-158.
[42]PAN K L,CHANG M B. Plasma catalytic oxidation of toluene over double perovskite-type oxide via packed-bed DBD[J]. Environmental Science and Pollution Research,2019,26(13):12948-12962.
[43]JIA Z X,WANG X J,Thevenet F,et al. Dynamic probing of plasma-catalytic surface processes:Oxidation of toluene on CeO2[J]. Plasma Processes and Polymers,2017,14(6):e1600114.
[44]YU X,DANG X Q,LI S J,et al. A comparison of in- and post-plasma catalysis for toluene abatement through continuous and sequential processes in dielectric barrier discharge reactors[J]. Journal of Cleaner Production,2020,276(6):124251.
[45]MUSTAFA M F,ABBAS Y,AJMAL M,et al. Application of non-thermal plasma(NTP)for volatile compounds(VCs)removal at sewage sludge composting facility[J]. Journal of Cleaner Production,2022,379:134504.
[46]NIE Y N,TANG X J,CAI W J,et al. Non-thermal plasma-enhanced catalytic activation of Mn-Zr-La/Al2O3 catalyst for meta-xylene degradation:Synergetic effects and degradation mechanism[J]. Chemosphere,2022,303:135184.
[47]LI S J,YU X,DANG X Q,et al. Non-thermal plasma coupled with MOx/γ-Al2O3(M:Fe,Co,Mn,Ce)for chlorobenzene degradation:Analysis of byproducts and the reaction mechanism[J]. Journal of Environmental Chemical Engineering,2021,9(6):106562.
[48]CHANG T,SHEN Z X,HUANG Y,et al. Post-plasma-catalytic removal of toluene using MnO2-Co3O4 catalysts and their synergistic mechanism[J]. Chemical Engineering Journal,2018,348:15-25.
[49]VANDENBROUCKE A M,MORA M,JIMENEZ-SANCHIDRIAN C,et al. TCE abatement with a plasma-catalytic combined system using MnO2 as catalyst[J]. Applied Catalysis B:Environmental,2014,156/157:94-100.
[50]JIANG L Y,WANG P J,ZHANG Y F,et al. Plasma-catalytic oxidation of chlorobenzene over Co-Mn/TiO2 catalyst in a dielectric barrier discharge reactor with the segmented electrodes[J]. Journal of Environmental Chemical Engineering,2022,10(4):108021.
[51]齐蕴博. 低温等离子体协同催化降解氯苯的研究[D]. 沈阳:沈阳工业大学,2020.
[52]LI Y Z,FAN Z Y,SHI J W,et al. Post plasma-catalysis for VOCs degradation over different phase structure MnO2 catalysts[J]. Chemical Engineering Journal,2014,241:251-258.
[53]HAMADA S,HOJO H,EINAGA H. Effect of catalyst composition and reactor configuration on benzene oxidation with a nonthermal plasma-catalyst combined reactor[J]. Catalysis Today,2019,332:144-152.

备注/Memo

备注/Memo:
收稿日期:2023-09-05.
基金项目:国家自然科学基金项目(51878356)、江苏省高等学校基础科学(自然科学)研究项目(22KJB610018).
通讯作者:席剑飞,博士,副教授,研究方向:燃烧与污染物控制、低温等离子体应用. E-mail:jianfeixi@njnu.edu.cn.
更新日期/Last Update: 2024-03-15