参考文献/References:
[1]MU Y B,WILLIAMS P T. Recent advances in the abatement of volatile organic compounds(VOCs)and chlorinated-VOCs by non-thermal plasma technology:A review[J]. Chemosphere,2022,308:136481.
[2]SANTOS C A,PHUONG N H,PARK M J,et al. Decomposition of indoor VOC pollutants using non-thermal plasma with gas recycling[J]. Korean Journal of Chemical Engineering,2020,37:120-129.
[3]SCHMIDT M,KETTLITZ M,KOLB J F. How activated carbon improves the performance of non-thermal plasma removing methyl ethyl ketone from a gas stream[J]. Cleaner Engineering and Technology,2021,4:100234.
[4]DAHIRU U H,SALEEM F,AL-SUDANI F T,et al. Decomposition of benzene vapour using non-thermal plasmas:The effect of moisture content on eliminating solid residue[J]. Journal of Environmental Chemical Engineering,2022,10(3):107767.
[5]尚超,韦献革,白敏冬,等. 低温等离子体催化降解烟气中甲苯的研究[J]. 中国环境科学,2020,40(9):3714-3720.
[6]SHI X J,LIANG W J,YIN G B,et al. Effect of the factors on the mixture of toluene and chlorobenzene degradation by non-thermal plasma[J]. Journal of Environmental Chemical Engineering,2022,10(6):108927.
[7]吴文杰. 低温等离子体-催化剂系统协同降解有机污染物的应用和机理研究[D]. 上海:华东师范大学,2022.
[8]张硕. 低温等离子体协同Mn基催化降解涂装废气的研究[D]. 沈阳:沈阳工业大学,2019.
[9]朱希峰. 介质阻挡放电低温等离子体脱除挥发性有机物的研究[D]. 北京:华北电力大学,2021.
[10]韩丰磊,季纯洁,张子琦,等. 低温等离子体协同催化技术处理VOCs研究综述[J]. 洁净煤技术,2022,28(2):23-31.
[11]ZHANG H,MA D Y,QIU R L,et al. Non-thermal plasma technology for organic contaminated soil remediation:A review[J]. Chemical Engineering Journal,2017,313:157-170.
[12]XIAO G,XU W P,WU R B,et al. Non-thermal plasmas for VOCs abatement[J]. Plasma Chemistry and Plasma Processing,2014,34(5):1033-1065.
[13]林云琴,林和健,王德汉. 低温等离子体技术及其在VOCs处理中的应用[J]. 城市环境与城市生态,2005,18(5):26-29.
[14]SCHIAVON M,TORRETTA V,CASAZZA A,et al. Non-thermal plasma as an innovative option for the abatement of volatile organic compounds:A review[J]. Water,Air,& Soil Pollution,2017,228(10):388.
[15]那刚. 线筒式脉冲电晕放电对混合VOCs降解的研究[D]. 大连:大连理工大学,2010.
[16]HARADA N,MATSUYAMA T,YAMAMOTO H. Decomposition of volatile organic compounds by a novel electrode system integrating ceramic filter and SPCP method[J]. Journal of Electrostatics,2007,65(1):43-53.
[17]聂勇,李伟,施耀,等. 等离子体反应器的改进及其与脉冲电源间的匹配[J]. 电工电能新技术,2004,23(2):64-68.
[18]ZHAO L,LUO Z Y,XUAN J Y,et al. Study of geometry structure on a wire-plate pulsed corona discharge reactor[J]. IEEE Transactions on Plasma Science,2012,40(3):802-810.
[19]MA Y C,TIAN Y X,ZENG Y X,et al. Plasma synthesis of ammonia in a tangled wire dielectric barrier discharge reactor:Effect of electrode materials[J]. Journal of the Energy Institute,2021,99:137-144.
[20]LI S J,DAND X Q,YU X,et al. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement:A review[J]. Chemical Engineering Journal,2020,388:124275.
[21]YU H,HU W,HE J,et al. Decomposition efficiency and aerosol by products of toluene,ethyl acetate and acetone using dielectric barrier discharge technique[J]. Chemosphere,2019,237:124439.
[22]赵琼. 低温等离子体降解VOCs的DBD反应器优化探索和产物分析[D]. 上海:东华大学,2017.
[23]马天鹏. 低温等离子体高效降解VOCs技术的探索研究[D]. 上海:东华大学,2019.
[24]SINGH N. Scale-up of a dielectric-barrier-discharge plasma reactor and toluene removal efficiency[D]. Oklahoma,USA:Oklahoma State University,2007.
[25]NIU G H,GUO G M,TANG J,et al. Design and electrical analysis of multi-electrode cylindrical dielectric barrier discharge plasma reactor[J]. IEEE Transactions on Plasma Science,2019,47(1):419-426.
[26]LIU Z Y,WANG Y F,ZHANG G,et al. Preparation of graphene-based catalysts and combined DBD reactor for VOC degradation[J]. Environmental Science and Pollution Research,2022,29:51717-51731.
[27]石秀娟,梁文俊,尹国彬,等. 低温等离子体协同Mn基催化剂降解氯苯研究[J]. 化工学报,2022,73(10):4472-4483.
[28]CHANG Z,WANG C,ZHANG G. Progress in degradation of volatile organic compounds based on low-temperature plasma technology[J]. Plasma Processes and Polymers,2020,17(4):e1900131.
[29]KIM H H,KIM J H,OGATA A. Microscopic observation of discharge plasma on the surface of zeolites supported metal nanoparticles[J]. Journals of Physics D Applied Physics: A Europhysics Journal,2009,42(13):135210.
[30]KIM H H,OGATA A. Interaction of nonthermal plasma with catalyst for the air pollution control[J]. International Journal of Plasma Environment Science & Technology,2012,6(1):43-48.
[31]HUANG R,LU M J,WANG P T,et al. Enhancement of the non-thermal plasma-catalytic system with different zeolites for toluene removal[J]. RSC Advances,2015,5(88):72113-72120.
[32]ZHANG Y R,VAN LAER K,NEYTS E C,et al. Can plasma be formed in catalyst pores?A modeling investigation[J]. Applied Catalysis B:Environmental,2016,185:56-67.
[33]AN H T Q,HUU T P,VAN T L,et al. Application of atmospheric non thermal plasma-catalysis hybrid system for air pollution control:Toluene removal[J]. Catalysis Today,2011,176(1):474-477.
[34]刘鑫. 低温等离子体催化协同降解混合VOCs(甲苯、丙酮及乙酸乙酯)的研究[D]. 上海:东华大学,2022.
[35]WANG B F,XU X X,XU W C,et al. The mechanism of non-thermal plasma catalysis on volatile organic compounds removal[J]. Catalysis Surveys from Asia,2018,22(2):73-94.
[36]SULTANA S,VANDENBROUCKE A M,MORA M,et al. Post plasma-catalysis for trichloroethylene decomposition over CeO2 catalyst:Synergistic effect and stability test[J]. Applied Catalysis B:Environmental,2019,253:49-59.
[37]胡志军,王志良. 脉冲电晕低温等离子体协同负载型催化剂降解乙硫醇[J]. 化工环保,2023,43(1):79-86.
[38]张硕,梁吉艳,沈欣军,等. DDBD协同MnOx催化氧化降解低浓度甲苯[J]. 环境工程,2019,37(10):148-152.
[39]LEE J E,OK Y S,TSANG D C W,et al. Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes:A critical review[J]. Science of the Total Environment,2020,719:137405.
[40]CHANG T,MA C L,SHEN Z X,et al. Mnbased catalysts for post non-thermal plasma catalytic abatement of VOCs:A review on experiments,simulations and modeling[J]. Plasma Chemistry and Plasma Processing,2021,41(5):1239-1278.
[41]QU M M,CHENG Z W,SUN Z R,et al. Non-thermal plasma coupled with catalysis for VOCs abatement:A review[J]. Process Safety and Environmental Protection,2021,153:139-158.
[42]PAN K L,CHANG M B. Plasma catalytic oxidation of toluene over double perovskite-type oxide via packed-bed DBD[J]. Environmental Science and Pollution Research,2019,26(13):12948-12962.
[43]JIA Z X,WANG X J,Thevenet F,et al. Dynamic probing of plasma-catalytic surface processes:Oxidation of toluene on CeO2[J]. Plasma Processes and Polymers,2017,14(6):e1600114.
[44]YU X,DANG X Q,LI S J,et al. A comparison of in- and post-plasma catalysis for toluene abatement through continuous and sequential processes in dielectric barrier discharge reactors[J]. Journal of Cleaner Production,2020,276(6):124251.
[45]MUSTAFA M F,ABBAS Y,AJMAL M,et al. Application of non-thermal plasma(NTP)for volatile compounds(VCs)removal at sewage sludge composting facility[J]. Journal of Cleaner Production,2022,379:134504.
[46]NIE Y N,TANG X J,CAI W J,et al. Non-thermal plasma-enhanced catalytic activation of Mn-Zr-La/Al2O3 catalyst for meta-xylene degradation:Synergetic effects and degradation mechanism[J]. Chemosphere,2022,303:135184.
[47]LI S J,YU X,DANG X Q,et al. Non-thermal plasma coupled with MOx/γ-Al2O3(M:Fe,Co,Mn,Ce)for chlorobenzene degradation:Analysis of byproducts and the reaction mechanism[J]. Journal of Environmental Chemical Engineering,2021,9(6):106562.
[48]CHANG T,SHEN Z X,HUANG Y,et al. Post-plasma-catalytic removal of toluene using MnO2-Co3O4 catalysts and their synergistic mechanism[J]. Chemical Engineering Journal,2018,348:15-25.
[49]VANDENBROUCKE A M,MORA M,JIMENEZ-SANCHIDRIAN C,et al. TCE abatement with a plasma-catalytic combined system using MnO2 as catalyst[J]. Applied Catalysis B:Environmental,2014,156/157:94-100.
[50]JIANG L Y,WANG P J,ZHANG Y F,et al. Plasma-catalytic oxidation of chlorobenzene over Co-Mn/TiO2 catalyst in a dielectric barrier discharge reactor with the segmented electrodes[J]. Journal of Environmental Chemical Engineering,2022,10(4):108021.
[51]齐蕴博. 低温等离子体协同催化降解氯苯的研究[D]. 沈阳:沈阳工业大学,2020.
[52]LI Y Z,FAN Z Y,SHI J W,et al. Post plasma-catalysis for VOCs degradation over different phase structure MnO2 catalysts[J]. Chemical Engineering Journal,2014,241:251-258.
[53]HAMADA S,HOJO H,EINAGA H. Effect of catalyst composition and reactor configuration on benzene oxidation with a nonthermal plasma-catalyst combined reactor[J]. Catalysis Today,2019,332:144-152.