[1]栾开宁,庄 重,杨世海,等.基于优化小波变换神经网络的分布式新能源信息预测方法[J].南京师范大学学报(工程技术版),2024,24(02):011-19.[doi:10.3969/j.issn.1672-1292.2024.02.002]
 Luan Kaining,Zhuang Zhong,Yang Shihai,et al.Optimized Wavelet Transform Neural Networks for Accurat Distributed Renewable Energy Information Prediction[J].Journal of Nanjing Normal University(Engineering and Technology),2024,24(02):011-19.[doi:10.3969/j.issn.1672-1292.2024.02.002]
点击复制

基于优化小波变换神经网络的分布式新能源信息预测方法
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
24卷
期数:
2024年02期
页码:
011-19
栏目:
电气工程
出版日期:
2024-06-15

文章信息/Info

Title:
Optimized Wavelet Transform Neural Networks for Accurat Distributed Renewable Energy Information Prediction
文章编号:
1672-1292(2024)02-0011-09
作者:
栾开宁1庄 重2杨世海2段梅梅2孔月萍2周雨奇2张汀荃2丁泽诚2
(1.国网江苏省电力有限公司,江苏 南京 210019)
(2.国网江苏省电力有限公司营销服务中心,江苏 南京 210019)
Author(s):
Luan Kaining1Zhuang Zhong2Yang Shihai2Duan Meimei2Kong Yueping2Zhou Yuqi2Zhang Tingquan2Ding Zecheng2
(1.State Grid Jiangsu Electric Power Co.,Ltd.,Nanjing 210019,China)
(2.Marketing Service Center of State Grid Jiangsu Electric Power Co.,Ltd.,Nanjing 210019,China)
关键词:
分布式新能源负荷预测辐照强度预测城市电网小波变换神经网络
Keywords:
distributed renewable energyload predictionirradiation intensity predictionurban power gridwavelet transform neural network
分类号:
TM615
DOI:
10.3969/j.issn.1672-1292.2024.02.002
文献标志码:
A
摘要:
分布式新能源发电是低碳化电力系统中重要的一部分. 随着分布式新能源在城市电网中的占比逐渐增加,负荷随机波动和天气随机变化对于城市电网的影响日益增强,对分布式新能源信息的预测准确性提出了更高的要求. 目前,分布式新能源的主要发电方式是分布式光伏发电以及分布式风力发电. 城市用电负荷的变化兼具周期性和随机性,而风速和辐照强度等因素分别对于分布式风力发电和分布式光伏发电有重要影响. 为了准确预测出分布式新能源的信息,构建了基于小波变换神经网络的分布式新能源信息预测方法. 首先,通过分析分布式新能源的工作原理,建立分布式新能源的模型; 然后,优化小波变换神经网络,以风力发电和光伏发电为例对负荷用电功率和辐照强度等对电网作用显著的参数进行预测; 最后,算例验证模型对分布式新能源信息进行预测的准确性.
Abstract:
Distributed renewable energy generation is a crucial component of low-carbon power systems. As the proportion of distributed renewable energy in urban power grids is gradually increasing,and the impacts of random load fluctuations and random weather changes on urban power grids are increasing,placing higher demands on the accuracy of distributed renewable energy information forecasting. Currently,the primary generation methods of distributed renewable energy are distributed photovoltaic power generation and distributed wind power generation. The changes of urban electricity load are both cyclical and random,while factors such as wind speed and solar irradiance have significant impacts on distributed wind power generation and distributed photovoltaic power generation,respectively. Therefore,based on wavelet transform neural network,a distributed renewable energy information prediction method is constructed. Firstly,the model of distributed renewable energy is established by analyzing the working principle of distributed renewable energy. Then,the wavelet transform neural network is optimized to predict the parameters that play a significant role in the renewable energy grid,such as the load power change and the irradiation intensity,using wind power generation and photovoltaic power generation as examples. Finally,the example verifies that the proposed model can accurately predict the information of distributed renewable energy.

参考文献/References:

[1]朱广岩,张小妹,严晓辉,等. 中国现代能源体系建设进程评估研究[J]. 工程科学与技术,2024,56(1):206-217.
[2]林雨眠,熊厚博,张笑演,等. 计及新能源机会约束与虚拟储能的电-热系统分布式多目标优化调度[J/OL]. 电工技术学报:1-19[2024-04-10]. https://doi.org/10.19595/j.cnki.1000-6753.tces.230926.
[3]郭佩乾,郝峰杰,袁志昌,等.混合多类型储能的分布式能源系统运行优化方法[J/OL]. 南方电网技术:1-11[2024-04-10]. http://kns.cnki.net/kcms/detail/44.1643.TK.20230913.2328.008.html.
[4]陆溪. 新能源技术的分布式电源在电网中的应用[J]. 中国高新科技,2023(17):110-112.
[5]穆璇,吴青龙,邹瞳.“十三五”以来中国能源消费研究现状与热点分析[J]. 中北大学学报(社会科学版),2023,39(4):70-76.
[6]谭宇航,肖天伦,杨保亮. 风电负荷分布式系统无聚类随机优化调度[J]. 控制工程,2022,29(11):2066-2074.
[7]侯伟,肖健,牛利勇. 基于灰色理论的光伏发电系统出力预测方法[J]. 电气技术,2016(4):53-58.
[8]李光明,刘祖明,何京鸿,等. 基于多元线性回归模型的并网光伏发电系统发电量预测研究[J]. 现代电力,2011,28(2):43-48.
[9]WANG Y R,WANG D C,TANG Y. Clustered hybrid wind power prediction model based on ARMA,PSO-SVM and clustering methods[J]. IEEE Access,2020,8:1-8.
[10]项晓宇,朱敏捷,周灵刚,等. 基于机器学习的短期规上行业工业增加值预测[J]. 南京师大学报(自然科学版),2023,46(2):99-106.
[11]张惠娟,刘琪,岑泽尧,等. 基于GWO-MLP的光伏系统输出功率短期预测模型[J]. 电测与仪表,2022,59(7):72-77,113.
[12]WU Y H,LIU J B,ZHANG J A,et al. Short-term forecast of photovoltaic power generation output based on improved PSO-Elman neural network[J]. IOP Conference Series:Earth and Environmental Science,2021,675(1):3-7.
[13]王粟,隗磊锋,曾亮. 基于GWO-SVM与随机森林的组合光伏功率预测模型[J]. 昆明理工大学学报(自然科学版),2021,46(5):82-88.
[14]PIERRO M,DE FELICE M,MAGGIONI E,et al. Data-driven upscaling methods for regional photovoltaic power estimation and forecast using satellite and numerical weather prediction data[J]. Solar Energy,2017,158:1026-1038.
[15]ZHANG X,LI Y,LU S,et al. A solar time based analog ensemble method for regional solar power forecasting[J]. IEEE Transactions on Sustainable Energy,2019,10(1):268-279.
[16]CABAN J,MAEK A,ARKAN B. Strategic model for charging a fleet of electric vehicles with energy from renewable energy sources[J]. Energies,2024,17(5):1264.
[17]LEE S,LEE E,LEE J,et al. Strategy for enhancing hosting capacity of distribution lines using a vertical photovoltaic system[J]. Energies,2024,17(6):1390.
[18]薛雯,闵富红,步娇娇,等. 流控型Buck变换器的动力学行为分析[J]. 南京师范大学学报(工程技术版),2024,24(1):32-39.
[19]MA D,XIE R,PAN G,et al. Photovoltaic power output prediction based on tabnet for regional distributed photovoltaic stations group[J]. Energies,2023,16(15):5649.
[20]ANASTASIADIS A G,PAPADIMITRIOU P,VLACHOU P,et al. Management of hybrid wind and photovoltaic system electrolyzer for green hydrogen production and storage in the presence of a small fleet of hydrogen vehicles:An economic assessment[J]. Energies,2023,16(24):7990.
[21]CHEN C S,TSAI C T,LIN C H,et al. Loading balance of distribution feeders with loop power controllers considering photovoltaic generation[J]. IEEE Transactions on Power Systems,2011,26(3):1762-1768.

备注/Memo

备注/Memo:
收稿日期:2024-04-10.
基金项目:国家电网有限公司科技项目(J2022045).
通讯作者:栾开宁,博士,高级工程师,研究方向:电力负荷预测与调控、智能用电. E-mail:luankaining2000@163.com
更新日期/Last Update: 2024-06-15