[1]李放放,苏 雷,苏 复,等.WO3/g-C3N4复合光催化剂的制备及性能研究[J].南京师范大学学报(工程技术版),2023,23(02):040-46.[doi:10.3969/j.issn.1672-1292.2023.02.006]
 Li Fangfang,Su Lei,Su Fu,et al.Preparation and Properties of WO3/g-C3N4 Composite Photocatalyst[J].Journal of Nanjing Normal University(Engineering and Technology),2023,23(02):040-46.[doi:10.3969/j.issn.1672-1292.2023.02.006]
点击复制

WO3/g-C3N4复合光催化剂的制备及性能研究
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
23卷
期数:
2023年02期
页码:
040-46
栏目:
化学工程与技术
出版日期:
2023-06-15

文章信息/Info

Title:
Preparation and Properties of WO3/g-C3N4 Composite Photocatalyst
文章编号:
1672-1292(2023)02-0040-07
作者:
李放放苏 雷苏 复林 军
(南京师范大学化学与材料科学学院,江苏 南京 210023)
Author(s):
Li FangfangSu LeiSu FuLin Jun
(School of Chemistry and Materials Science,Nanjing Normal University,Nanjing 210023,China)
关键词:
WO3/g-C3N4Z型异质结光催化降解盐酸四环素
Keywords:
WO3/g-C3N4Z-scheme heterojunctionphotocatalytic degradationtetracycline hydrochloride
分类号:
O643.3
DOI:
10.3969/j.issn.1672-1292.2023.02.006
文献标志码:
A
摘要:
采用溶剂热法合成具有Z型异质结构的WO3/g-C3N4复合光催化材料,采用XRD、XPS、SEM等表征测试了材料的组成、形貌等,考察其光催化性能及对盐酸四环素(TC)的降解能力,并研究了WO3/g-C3N4的降解机理. 与WO3、g-C3N4相比,WO3/g-C3N4复合材料降解效果明显提高,其中 WCN-3(WO3/g-C3N4-3)的催化能力最优. 复合材料光催化活性增强可归因于其较大的比表面积为光催化反应提供了更多的活性位点. PL测试结果显示复合材料中光生电子-空穴复合被显著抑制,自由基捕获实验证实参与光催化降解的主要活性成分是超氧基自由基(·O-2)和空穴(h+).
Abstract:
In this paper,WO3/g-C3N4 Z-scheme heterojunction is successfully synthesized by solvothermal method. XRD,XPS and SEM are used to characterize the composition and morphology of the materials,whereas the photocatalytic performance and their ability to degrade tetracycline hydrochloride(TC)are tested. Compared with WO3 and g-C3N4,the degradation effect of WO3/g-C3N4 are significantly improved and WCN-3(WO3/g-C3N4-3)have the best ability. The enhanced photocatalytic activity of composite material can be attributed to its larger specific surface area,which provides more active sites. PL also shows that electron-hole pair recombination is obvious restrained. In addition,radicals capture experiments confirm that the main active components of photocatalytic degradation are superoxide ion radicals(·O-2)and holes(h+).

参考文献/References:

[1]KUMAR A,RAIZADA P,SINGH P,et al. Perspective and status of polymeric graphitic carbon nitride based Z-scheme photocatalytic systems for sustainable photocatalytic water purification[J]. Chemical Engineering Journal,2020,391:123496.
[2]XU Q L,ZHU B C,CHENG B,et al. Photocatalytic H2 evolution on graphdiyne/g-C3N4 hybrid nanocomposites[J]. Applied Catalysis B:Environmental,2019,255:117770.
[3]LI T T,HU X L,LIU C C,et al. Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation[J]. Journal of Molecular Catalysis A:Chemical,2016,425:124-135.
[4]WANG J,WANG G H,WANG X,et al. 3D/2D direct Z-scheme heterojunctions of hierarchical TiO2 microflowers/g-C3N4 nanosheets with enhanced charge carrier separation for photocatalytic H2 evolution[J]. Carbon,2019,149:618-626.
[5]MISHRA A,MEHTA A,BASU S,et al. Graphitic carbon nitride g-C3N4-based metal-free photocatalysts for water splitting:a review[J]. Carbon,2019,149:693-721.
[6]LI F T,ZHAO Y,WANG Q,et al. Enhanced visible-light photocatalytic activity of active Al2O3/g-C3N4 heterojunctions synthesized via surface hydroxyl modification[J]. Journal of Hazardous Materials,2015,283:371-381.
[7]KE D N,LIU H J,PENG T Y,et al. Preparation and photocatalytic activity of WO3/TiO2 nanocomposite particles[J]. Materials Letters,2008,62(3):447-450.
[8]NOGUEIRA H I S,CAVALEIRO A M V,ROCHA J,et al. Synthesis and characterization of tungsten trioxide powders prepared from tungstic acids[J]. Materials Research Bulletin,2004,39(4/5):683-693.
[9]BALAZSI C,PFEIFER J. Development of tungsten oxide hydrate phases during precipitation,room temperature ripening and hydrothermal treatment[J]. Solid State Ionics,2002,151(1):353-358.
[10]CHEN Z G,WANG Q,WANG H L,et al. Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo[J]. Advanced Materials,2013,25(14):2095-2100.
[11]JIANG X Y,HUANG J D,BI Z H,et al. Plasmonic active“hot spots”-confined photocatalytic CO2 reduction with high selectivity for CH4 production[J]. Advanced Materials,2022,34(14):2109330.
[12]WANG M,TAN G Q,DANG M Y,et al. Dual defects and build-in electric field mediated direct Z-scheme W18O49/g-C3N4-X heterojunction for photocatalytic NO removal and organic pollutant degradation[J]. Journal of Colloid and Interface Science,2021,582:212-226.
[13]PEI C Y,CHEN Y G,WANG L,et al. Step-scheme WO3/CdIn2S4 hybrid system with high visible light activity for tetracycline hydrochloride photodegradation[J]. Applied Surface Science,2020,535:147682.
[14]HUANG Z F,SONG J J,WANG X,et al. Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution[J]. Nano Energy,2017,40:308-316.
[15]CHEN W Y,HAN B,TIAN C,et al. MOFs-derived ultrathin holey Co3O4 nanosheets for enhanced visible light CO2 reduction[J]. Applied Catalysis B:Environmental,2019,244:996-1003.
[16]PAN T,CHEN D D,XU W C,et al. Anionic polyacrylamide-assisted construction of thin 2D-2D WO3/g-C3N4 Step-scheme heterojunction for enhanced tetracycline degradation under visible light irradiation[J]. Journal of Hazardous Materials,2020,393:122366.
[17]JIA J K,JIANG C Y,ZHANG X R,et al. Urea-modified carbon quantum dots as electron mediator decorated g-C3N4/WO3 with enhanced visible-light photocatalytic activity and mechanism insight[J]. Applied Surface Science:A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2019,495:143524.
[18]YU W L,CHEN J X,SHANG T T,et al. Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production[J]. Applied Catalysis B:Environmental,2017,219:693-704.
[19]ZHANG Z Y,HUANG J D,FANG Y R,et al. A nonmetal plasmonic Z-scheme photocatalyst with UV- to NIR-driven photocatalytic protons reduction[J]. Advanced Materials,2017,29(18):1606688.
[20]YANG L P,WANG P Y,YIN J,et al. Engineering of reduced graphene oxide on nanosheet-g-C3N4/perylene imide heterojunction for enhanced photocatalytic redox performance[J]. Applied Catalysis B:Environmental,2019,250:42-51.
[21]ZHU B C,XIA P F,LI Y,et al. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst[J]. Applied Surface Science:Part B,2017,391:175-183.
[22]LI C M,YU S Y,DONG H J,et al. Z-scheme mesoporous photocatalyst constructed by modification of Sn3O4 nanoclusters on g-C3N4 nanosheets with improved photocatalytic performance and mechanism insight[J]. Applied Catalysis B:Environmental,2018,238:284-293.
[23]HAO L,HUANG H W,ZHANG Y H,et al. Oxygen vacant semiconductor photocatalysts[J]. Advanced Functional Materials,2021,31(25):2100919.

备注/Memo

备注/Memo:
收稿日期:2022-07-11.
基金项目:国家重点研发项目(2017YFB0602500).
通讯作者:苏复,博士,高级实验师,研究方向:光催化材料制备及性能研究、资源综合利用. E-mail:sufu@njnu.edu.cn
更新日期/Last Update: 2023-06-15