[1]柏宏权,韩庆年.机器学习在适应性教学系统中的应用研究[J].南京师范大学学报(工程技术版),2007,07(04):076-79.
 Bai Hongquan,Han Qingnian.Application of Machine Learning in Adaptive Instructional System[J].Journal of Nanjing Normal University(Engineering and Technology),2007,07(04):076-79.
点击复制

机器学习在适应性教学系统中的应用研究
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
07卷
期数:
2007年04期
页码:
076-79
栏目:
出版日期:
2007-12-30

文章信息/Info

Title:
Application of Machine Learning in Adaptive Instructional System
作者:
柏宏权1 韩庆年2
1. 南京师范大学教育科学学院, 江苏南京210097; 2. 江苏广播电视大学传媒艺术系, 江苏南京210036
Author(s):
Bai Hongquan1Han Qingnian2
1.School of Educational Science,Nanjing Normal University,Nanjing 210097,China;2.Department of Communication and Art,Jiangsu Radio and TV University,Nanjing 210036,China
关键词:
机器学习 适应性学习系统 朴素贝叶斯分类
Keywords:
m ach ine learning adap tive instructiona l system Naive Bay es c lassifier
分类号:
TP18;TP391.6
摘要:
根据学生的学习行为主动给予适应性的教学材料是适应性教学系统研究关注的焦点问题.当前的适应性学习系统在主动适应学生的学习行为方面存在许多不足.针对适应性教学系统的这个问题,利用机器学习方法根据学生的学习行为,预测学生的学习风格与学习行为,改进适应性学习系统的适应性,提出了在适应性学习系统中使用机器学习的知识表示方法,设计了用朴素的贝叶斯分类器动态观察和预测学生的学习行为的方案.实验结果表明,朴素的贝叶斯分类器对于预测适应性教学系统中学生的学习行为有较高的准确率.
Abstract:
In the adaptive instructiona l system, how to g ive learners adaptiv e learning m ater ia ls is a focus question. There arem any de fic ienciesw ith the current adaptive instructional system’ s automa tica lly adapting student‘ s learn ing sty le and learn ing behav ior. A im ing at this problem o f the adaptive instruc tiona l sy stem, this pape r uses know ledge expression m ethods wh ich fit m ach ine learn ing and design a schem e by using Naiive B ayes C lassifie r to predict lea rner ’ s behav ior, so that these can g et learner’ s prefe rences. The result of exper im ent shows that Naiive Bayes C lass ifier has good accuracy in pred icting learner‘ s behav ior in the adaptive instructiona l system.

参考文献/References:

[ 1] Fe lder R M, S ilv erm an L K. Learn ing and teaching styles in eng ineer ing education[ J] . Eng ineer ing Education, 1988( 3): 674- 681.
[ 2] Carver C A, H oward R A, LaneW D. D iffe rent learning sty les through course hyperm ed ia[ J] . IEEE Transac tions on Education, 2004( 3) : 33- 38.
[ 3] Fe lder R M, S ilv erm an L K. Learn ing and teaching styles in eng ineer ing education[ J] . Eng ineer ing Education, 2004( 4): 674- 681.
[ 4] LaroussiMona. Prov iding an adaptive learning through thew eb case o f CAMELEON[ C ] / / Com pute rA idedM ed ium for Learning on N etworks. U rbana: University of Illino is Press, 2003: 567- 571.
[ 5] 赖丁· 雷纳. 认知风格与学习策略[M ]. 上海: 华东师范大学出版社, 2003: 47- 48.
La rtin T N. Cogn ize Sty le and learn ing Stra tegy[M ]. Shangha:i East Ch inaNo rm alUn iversity Press, 2003: 47- 48. ( in Ch-i nese)
[ 6] 谭顶良. 学习风格论[M ]. 南京: 江苏教育出版社, 1995: 317.
Tan D ing liang. Learn ing S ty le[M ]. Nanjing: Jiangsu Education Press, 1995: 317. ( in Ch inese)
[ 7] Ra jeev Rastog,i Kyuseok Shim. PUBLIC: A dec ision tree c lassifier that Integ rates bu ilding and prun ing[ C ] / / Proceeding o f the 24 th VLDB Conference. N ew York: Cam bridge University Press, 1998: 127- 131.
[ 8] Kw ok T Y. Autom atic tex t categor ization using support vector machine[ C] / / Proc Int Conf on Neura l Info rm ation Process ing. Be ijing: TsinghuaUn iversity Press, 1998: 347- 351.
[ 9] 苏伟峰, 李绍滋, 李堂秋. 一个基于概念的中文文本分类模型[ J] . 计算机工程与应用, 2002, 38( 6): 193- 195.
SuW e ifeng, Li Shaoz,i L iT angq iu. A m odule of autom a tic chinese docum ents classification based on concept[ J] . Com puter Eng ineer ing and App lications, 2002, 38( 6): 193- 195. ( in Chinese)
[ 10] 肖旻, 刘晓璐, 屠立忠. 基于贝叶斯分类的邮件过滤方法及模型研究[ J]. 南京师范大学学报: 工程技术版, 2006, 6( 2): 86- 89.
X iaoM in, L iu Xiaolu, Tu L izhong. Research in am e thod and m ode l o f spam filter ing based on Bayesian classifier[ J]. Journa l of Nanjing No rm alUn iv ers ity: Eng inee ring and Techno logy Ed ition, 2006, 6( 2): 86- 89. ( in Ch inese)
[ 11] 王斌, 潘文峰. 基于内容的垃圾邮件过滤综述[ J]. 中文信息学报, 2005, 19( 5): 1- 10.
W ang B in, PanW enfeng. A su rvey o f content-based ant-i spam em a il filte ring[ J]. Journa l o f Ch inese Inform ation Process ing, 2005, 19( 5): 1- 10. ( in Ch inese)

相似文献/References:

[1]杨杨,刘会东.一种基于成对约束的特征选择改进算法[J].南京师范大学学报(工程技术版),2011,11(01):056.
 Yang Yang,Liu Huidong.An Improved Algorithm for Feature Selection Based on Pairwise Constraint[J].Journal of Nanjing Normal University(Engineering and Technology),2011,11(04):056.
[2]赵红艳,等.基于机器学习与语义知识的动词隐喻识别[J].南京师范大学学报(工程技术版),2011,11(03):059.
 Zhao Hongyan,Qu Weiguang,et al.Chinese Verb Metaphor Recognition Based on Machine Learning and Semantic Knowledge[J].Journal of Nanjing Normal University(Engineering and Technology),2011,11(04):059.
[3]吴兴惠,吴 迪,周玉萍,等.基于机器学习算法的稀土元素掺杂TiO2光催化活性分析[J].南京师范大学学报(工程技术版),2017,17(03):087.[doi:10.3969/j.issn.1672-1292.2017.03.013]
 Wu Xinghui,Wu Di,Zhou Yuping,et al.Photocatalytic Activity Prediction of Rare Earth Doped TiO2Based on Machine Learning Algorithm[J].Journal of Nanjing Normal University(Engineering and Technology),2017,17(04):087.[doi:10.3969/j.issn.1672-1292.2017.03.013]
[4]刘金晶,王丽英.在线学习社区发帖质量评价的回归模型研究[J].南京师范大学学报(工程技术版),2020,20(01):033.[doi:10.3969/j.issn.1672-1292.2020.01.006]
 Liu Jinjing,Wang Liying.Regression Model Research on Posting Quality Evaluationin Online Learning Community[J].Journal of Nanjing Normal University(Engineering and Technology),2020,20(04):033.[doi:10.3969/j.issn.1672-1292.2020.01.006]
[5]邱 宇,李文魁,李 冕.基于随机森林的虚拟路谱准确度智能主观评价法[J].南京师范大学学报(工程技术版),2022,22(04):045.[doi:10.3969/j.issn.1672-1292.2022.04.006]
 Qiu Yu,Li Wenkui,Li Mian.Intelligent Subjective Evaluation of Virtual Road Load Data Accuracy Based on Random Forest[J].Journal of Nanjing Normal University(Engineering and Technology),2022,22(04):045.[doi:10.3969/j.issn.1672-1292.2022.04.006]
[6]陈 斌,樊飞燕,张 睿.年龄算子深度稀疏融合扩展表情识别[J].南京师范大学学报(工程技术版),2023,23(03):043.[doi:10.3969/j.issn.1672-1292.2023.03.006]
 Chen Bin,Fan Feiyan,Zhang Rui.Age Operator Deep Sparse Fusion Extension of the Expression Recognition[J].Journal of Nanjing Normal University(Engineering and Technology),2023,23(04):043.[doi:10.3969/j.issn.1672-1292.2023.03.006]

备注/Memo

备注/Memo:
作者简介: 柏宏权( 1975-) , 讲师, 博士, 主要从事适应性学习和适应性学习系统的教学与研究. E-mail:ba ihongquan@ 163. com
更新日期/Last Update: 2013-04-29