[1]汤云峰,赵 静,谢 非,等.基于改进遗传算法的机器人路径规划方法[J].南京师范大学学报(工程技术版),2021,21(03):049-55.[doi:10.3969/j.issn.1672-1292.2021.03.007]
 Tang Yunfeng,Zhao Jing,Xie Fei,et al.Robot Path Planning Method Based on Improved Genetic Algorithm[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(03):049-55.[doi:10.3969/j.issn.1672-1292.2021.03.007]
点击复制

基于改进遗传算法的机器人路径规划方法
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
21卷
期数:
2021年03期
页码:
049-55
栏目:
计算机科学与技术
出版日期:
2021-09-30

文章信息/Info

Title:
Robot Path Planning Method Based on Improved Genetic Algorithm
文章编号:
1672-1292(2021)03-0049-07
作者:
汤云峰12赵 静23谢 非14李鑫煌23林智昌23刘益剑1
(1.南京师范大学电气与自动化工程学院,江苏 南京 210023)(2.南京邮电大学自动化学院、人工智能学院,江苏 南京 210023)(3.江苏省物联网智能机器人工程实验室,江苏 南京 210023)(4.南京中科煜宸激光技术有限公司,江苏 南京 210038)
Author(s):
Tang Yunfeng12Zhao Jing23Xie Fei14Li Xinhuang23Lin Zhichang23Liu Yijian1
(1.School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210023,China)(2.College of Automation and College of Artificial Intelligence,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)(3.Jiangsu Engineering Laboratory for Internet of Things and Intelligent Robotics,Nanjing 210023,China)(4.Nanjing Zhongke Raycham Laser Technology Co.,Ltd.,Nanjing 210038,China)
关键词:
机器人遗传算法平滑度函数精英保留路径规划
Keywords:
robotgenetic algorithmsmoothness functionelite retentionpath planning
分类号:
TP18; TP242
DOI:
10.3969/j.issn.1672-1292.2021.03.007
文献标志码:
A
摘要:
针对基本遗传算法在机器人路径规划中存在收敛速度慢、易陷入局部最优解的问题,提出一种改进的遗传算法. 在适应度函数中增加带有惩罚项的平滑度函数; 引入精英保留机制,保留每一代最优个体; 自适应调整交叉概率和变异概率,使交叉概率和变异概率随进化次数变化而变化. 利用MATLAB在两种障碍物地图中与其他两种算法进行仿真对比分析,实验结果表明,改进后的算法在路径规划的应用中有效减少了机器人的转弯次数,提高了逃离局部最优路径的能力,寻优能力更强.
Abstract:
An improved genetic algorithm is proposed to solve the problem of slow convergence rate and easy to fall into the local optimal solution in robot path planning. The smoothness function with penalty term is added to the fitness function. The elite retention mechanism is introduced to retain the optimal individual of each generation. The crossover probability and mutation probability are adjusted adaptively so that they vary with the number of evolutions. MATLAB is used to simulate and compare the two obstacle maps with the other two algorithms. Experimental results show that the improved algorithm effectively reduces the number of turns of robots in path planning,improve the ability to escape from the local optimal path,and has a stronger ability to find the optimal solution.

参考文献/References:

[1] 魏立新,吴绍坤,孙浩,等. 基于多行为的移动机器人路径规划[J]. 控制与决策,2019,34(12):2721-2726.
[2]康玉祥,姜春音,秦运海,等. 基于改进PSO算法的机器人路径规划及实验[J]. 机器人,2020,42(1):71-78.
[3]王晓燕,杨乐,张宇,等. 基于改进势场蚁群算法的机器人路径规划[J]. 控制与决策,2018,33(10):1775-1781.
[4]魏彤,龙琛. 基于改进遗传算法的移动机器人路径规划[J]. 北京航空航天大学学报,2020,46(4):703-711.
[5]张晓莉,杨亚新,谢永成. 改进的蚁群算法在机器人路径规划上的应用[J]. 计算机工程与应用,2020,56(2):29-34.
[6]于振中,李强,樊启高. 智能仿生算法在移动机器人路径规划优化中的应用综述[J]. 计算机应用研究,2019,36(11):3210-3219.
[7]BINITHA S,SATHYA S S. A survey of bio inspired optimization algorithm[J]. International Journal of Soft Computing & Engineering,2012,2(2):137-151.
[8]张玮,马焱,赵捍东,等. 基于改进烟花-蚁群混合算法的智能移动体避障路径规划[J]. 控制与决策,2019,34(2):335-343.
[9]MILAD N,ESMAEEL K,SAMIRA D. Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm[J]. Expert Systems with Applications,2020,115:106-120.
[10]陈军章. 改进人工鱼群算法的机器人路径规划及跟踪[J]. 机械设计与制造,2019(4):251-255.
[11]CAO J,LI Y,ZHAO S Q,et al. Genetic-algorithm-based global path planning for AUV[C]//2016 9th International Symposium on Computational Intelligence and Design(ISCID).Hangzhou,China:IEEE,2016:16637599.
[12]YAO Z G,MA L Y. A static environment-based path planning method by using genetic algorithm[C]//2010 International Conference on Computing,Control and Industrial Engineering. Wuhan,China:IEEE,2010:11391889.
[13]LAMINI C,BENHLIMA S,ELBEKRI A. Genetic algorithm based approach for autonomous mobile robot path planning[J]. Procedia Computer Science,2018,127:180-189.[14]QU H,XING K,ALEXANDER T. An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots[J]. Neurocomputing,2013,120:509-517.
[15]孙波,姜平,周根荣,等. 改进遗传算法在移动机器人路径规划中的应用[J]. 计算机工程与应用,2019,55(17):162-168.
[16]徐力,刘云华,王启富. 自适应遗传算法在机器人路径规划的应用[J]. 计算机工程与应用,2020,56(18):36-41.
[17]何庆,吴意乐,徐同伟. 改进遗传模拟退火算法在TSP优化中的应用[J]. 控制与决策,2018,33(2):219-225.
[18]江涛,张志安,程志,等. 改进遗传算法与领航跟随法的机器人编队方法[J]. 计算机工程与应用,2020,56(3):240-245.

相似文献/References:

[1]杨玉,李慧,戴红伟,等.改进量子交叉遗传算法在TSP问题中的应用[J].南京师范大学学报(工程技术版),2012,12(03):043.
 Yang Yu,Li Hui,Dai Hongwei.Improved Quantum Crossover Based GA and Its Application to Traveling Salesman Problem[J].Journal of Nanjing Normal University(Engineering and Technology),2012,12(03):043.
[2]陈胜军.工业机器人系统可靠性预测方法研究[J].南京师范大学学报(工程技术版),2008,08(02):006.
 Chen Shengjun.Study on Reliability Prediction Method of Industrial Robot System[J].Journal of Nanjing Normal University(Engineering and Technology),2008,08(03):006.
[3]国海涛,朱庆保,徐守江,等.基于栅格法的机器人路径规划快速搜索随机树算法[J].南京师范大学学报(工程技术版),2007,07(02):058.
 Guo Haitao,Zhu Qingbao,Xu Shoujiang.Rapid-Exploring Random Tree Algorithm for Path Planning of Robot Based on Grid Method[J].Journal of Nanjing Normal University(Engineering and Technology),2007,07(03):058.
[4]张金龙,赵芙生.基于遗传算法的三维重构图像阈值分割[J].南京师范大学学报(工程技术版),2005,05(01):005.
 ZHANG Jinlong,ZHAO Fusheng.Image Threshold Segmentation of 3D Reconstruction Based on Genetic Algorithm[J].Journal of Nanjing Normal University(Engineering and Technology),2005,05(03):005.
[5]刘清.多点正交交叉的遗传算法研究[J].南京师范大学学报(工程技术版),2005,05(02):042.
 LIU Qing.Research on Genetic Algorithm with Multi-Point Orthogonal Crossover Operation[J].Journal of Nanjing Normal University(Engineering and Technology),2005,05(03):042.
[6]朱玉芳,施祖康.小口径管道机器人的检测精度分析[J].南京师范大学学报(工程技术版),2004,04(02):037.
 ZHU Yufang,SHI Zukang.Testing Accuracy Analysis for Small Diameter Pipe Inspection Robot[J].Journal of Nanjing Normal University(Engineering and Technology),2004,04(03):037.
[7]李宇中,刘红星,张 胜.猴王遗传算法的改进[J].南京师范大学学报(工程技术版),2004,04(03):053.
 LI Yuzhong,LIU Hongxing,ZHANG Shen.Improving Monkey-King Genetic Algorithm[J].Journal of Nanjing Normal University(Engineering and Technology),2004,04(03):053.
[8]王 雷,蔡劲草,李 明.基于正交试验的遗传算法参数优化[J].南京师范大学学报(工程技术版),2016,16(02):081.[doi:10.3969/j.issn.1672-1292.2016.02.013]
 Wang Lei,Cai Jingcao,Li Ming.Parameter Optimization of Genetic AlgorithmBased on Orthogonal Experiment[J].Journal of Nanjing Normal University(Engineering and Technology),2016,16(03):081.[doi:10.3969/j.issn.1672-1292.2016.02.013]
[9]黄宏运,吴礼斌,李诗争.GA优化的SVM在量化择时中的应用[J].南京师范大学学报(工程技术版),2017,17(01):072.[doi:10.3969/j.issn.1672-1292.2017.01.011]
 Huang Hongyun,Wu Libin,Li Shizheng.Application of SVM Optimized by Genetic Algorithmin Quantization Timing Selection[J].Journal of Nanjing Normal University(Engineering and Technology),2017,17(03):072.[doi:10.3969/j.issn.1672-1292.2017.01.011]
[10]赵世田,付莹莹,曾 勇,等.基于非线性自适应度函数的遗传算法求取自由曲面最大主曲率研究[J].南京师范大学学报(工程技术版),2018,18(03):019.[doi:10.3969/j.issn.1672-1292.2018.03.003]
 Zhao Shitian,Fu Yingying,Zeng Yong,et al.Research in Calculation of Principal Curvature of Free-formSurface Based on Non-linear Automatic FitnessFunction of Genetic Algorithm[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(03):019.[doi:10.3969/j.issn.1672-1292.2018.03.003]

备注/Memo

备注/Memo:
收稿日期:2020-11-25.
基金项目:国家重点研发计划项目(2017YFB1103200)、江苏省科技成果转化项目(BA2020004)、2020年江苏省省级工业和信息产业转型升级专项资金项目(JITC-2000AX0676-71)、南京市优势产业关键技术突破招标项目(201803).
通讯作者:谢非,博士,副教授,研究方向:机器视觉与图像处理、机器学习与模式识别. E-mail:xiefei@njnu.edu.cn
更新日期/Last Update: 2021-09-30