参考文献/References:
[1]SARKAR A,GHOSH S,RAY S S. A hardware-based memory-efficient solution for pair-wise compact sequence alignment[J]. IETE Journal of Research,2023,69(6):3638-3649.
[2]刘济晗. 三代RNA测序序列的比对和分析工具[D]. 哈尔滨:哈尔滨工业大学,2018.
[3]LI R Q,LI Y R,KRISTIANSEN K,et al. SOAP:short oligonucleotide alignment program[J]. Bioinformatics,2008,24(5):713-714.
[4]CAMPAGNA D,ALBIERO A,BILARDI A,et al. PASS:a program to align short sequences[J]. Bioinformatics,2009,25(7):967-968.
[5]SMITH A D,XUAN Z Y,ZHANG M Q. Using quality scores and longer reads improves accuracy of Solexa read mapping[J]. BMC Bioinformatics,2008,9(1):128.
[6]SSERWADDA I,MBOOWA G. rMAP:The rapid microbial analysis pipeline for ESKAPE bacterial group whole-genome sequence data[J]. Microbial Genomics,2021,7(6):000583.
[7]LI H,RUAN J,DURBIN R. Mapping short DNA sequencing reads and calling variants using mapping quality scores[J]. Genome Research,2008,18(11):1851-1858.
[8]RUMBLE S M,LACROUTE P,DALCA A V,et al. SHRiMP:accurate mapping of short color-space reads[J]. PLoS Computational Biology,2009,5(5):e1000386.
[9]BURROWS M J,WHEELER D. A block-sorting lossless data compression algorithm:SRC Research Report 124[R]. Palo Alto,CA,USA:Digital Systems Research Center,1994.
[10]FUENTES-SEPAM'U1LVEDA J,NAVARRO G,NEKRICH Y. Parallel computation of the Burrows Wheeler Transform in compact space[J]. Theoretical Computer Science,2020,812:123-136.
[11]GAGIE T,MANZINI G,SIRÉN J. Wheeler graphs:A framework for BWT-based data structures[J]. Theoretical Computer Science,2017,698:67-78.
[12]LANGMEAD B,TRAPNELL C,POP M,et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome Biology,2009,10(3):R25.
[13]LANGMEAD B,SALZBERG S L. Fast gapped-read alignment with Bowtie 2[J]. Nature Methods,2012,9(4):357-359.
[14]LI H,DURBIN R. Fast and accurate long-read alignment with Burrows-Wheeler transform[J]. Bioinformatics,2010,26(5):589-595.
[15]KEEL B N,SNELLING W M. Comparison of burrows-wheeler transform-based mapping algorithms used in high-throughput whole-genome sequencing:application to illumina data for livestock genomes[J]. Frontiers in Genetics,2018(9):35.
[16]赵雅男,徐云,程昊宇. 序列比对算法中的 BW 变换索引技术研究及其改进[J]. 计算机工程,2016,42(1):282-286.
[17]CHANG C H,CHOU M T,WU Y C,et al. sBWT:Memory efficient implementation of the hardware-acceleration-friendly Schindler transform for the fast biological sequence mapping[J]. Bioinformatics,2016,32(22):3498-3500.
[18]EGIDI L,LOUZA F A,MANZINI G,et al. External memory BWT and LCP computation for sequence collections with applications[J]. Algorithms for Molecular Biology,2019,14:6.
[19]LIU Y C,SCHMIDT B,MASKELL D. CUSHAW:a CUDA compatible short read aligner to large genomes based on the Burrows-Wheeler transform[J]. Bioinformatics,2012,28(14):1830-1837.
[20]KUMAR S,AGARWAL S,RANVIJAY. Burrows wheeler transform and wavelet tree based retrieval of genome sequence in an indexed genome database[J]. Recent Advances in Computer Science and Communications,2020,13(6):1213-1220.
[21]SILVA M,PRATAS D,PINHO A J. AC2:an efficient protein sequence compression tool using artificial neural networks and cache-hash models[J]. Entropy(Basel),2021,23(5):530.
[22]CHEN Y,YOU D L,ZHANG T J,et al. SLDMS:a tool for calculating the overlapping regions of sequences[J]. Frontiers in Plant Science,2022,12:813036.
[23]BINGMANN T. Scalable string and suffix sorting:algorithms,techniques,and tools[EB/OL].(2018-08-02)[2024-05-12]. https://doi.org/10.48550/arXiv.1808.00963.
[24]ZHENG W B,CHEN J,DOAK T G,et al. ADFinder:accurate detection of programmed DNA elimination using NGS high-throughput sequencing data[J]. Bioinformatics,2020,36(12):3632-3636.
[25]KIM Y,CHOI S,JEONG J,et al. Data dependency reduction for high-performance FPGA implementation of DEFLATE compression algorithm[J]. Journal of Systems Architecture,2019,98:41-52.
[26]GRIEBLER D,HOFFMANN R B,DANELUTTO M,et al. High-level and productive stream parallelism for Dedup,Ferret,and Bzip2[J]. International Journal of Parallel Programming,2019,47(2):253-271.