参考文献/References:
[1]YANG X D,TIAN Y L. Effctive 3D action recognition using eigenjoints[J]. Journal of Visual Communication and Image Representation,2014,25(1):2-11.
[2]石跃祥,朱茂清. 基于骨架动作识别的协作卷积Transformer网络[J]. 电子与信息学报,2023,45(4):1485-1493.
[3]CHAUDHRY R,RAVICHANDRAN A,HAGER G,et al. Histograms of oriented optical flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami,USA:IEEE,2009.
[4]姜权晏,吴小俊,徐天阳. 用于骨架行为识别的多维特征嵌合注意力机制[J]. 中国图象图形学报,2022,27(8):2391-2403.
[5]周风余,尹建芹,杨阳,等. 基于时序深度置信网络的在线人体动作识别[J]. 自动化学报,2016,42(7):1030-1039.
[6]PENG W,HONG X P,CHEN H Y,et al. Learning graph convolutional network for skeleton-based human action recognition by neural searching[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York,USA:AAAI,2020.
[7]马钰锡,谭励,董旭,等. 面向智能监控的行为识别[J]. 中国图象图形学报,2019,24(2):282-290.
[8]DU W B,WANG Y L,QIAO Y. Recurrent spatial-temporal attention network for action recognition in videos[J]. IEEE Transactions on Image Processing,2018,27(3):1347-1360.
[9]XIA R J,LI Y S,LUO W H. LAGA-Net:Local-and-global attention network for skeleton based action recognition[J]. IEEE Transactions on Multimedia,2022,24:2648-2661.
[10]JIANG X H,XU K,SUN T F. Action recognition scheme based on skeleton representation with DS-LSTM network[J]. IEEE Transactions on Circuits and Systems for Video Technology,2020,30(7):2129-2140.
[11]SI C Y,CHEN W T,WANG W,et al. An attention enhanced graph convolutional LSTM network for skeleton-based action recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach,USA:IEEE,2019.
[12]李扬志,袁家政,刘宏哲. 基于时空注意力图卷积网络模型的人体骨架动作识别算法[J]. 计算机应用,2021,41(7):1915-1921.
[13]田志强,邓春华,张俊雯. 基于骨骼时序散度特征的人体行为识别算法[J]. 计算机应用,2021,41(5):1450-1457.
[14]SHI L,ZHANG Y F,CHENG J,et al. Skeleton-based action recognition with multi-stream adaptive graph convolutional networks[J]. IEEE Transactions on Image Processing,2020,29:9532-9545.
[15]CAO B,XIA H,LIU Z. A video abnormal behavior recognition algorithm based on deep learning[C]//Proceedings of the 2021 IEEE 4th Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC). Chongqing,China:IEEE,2021.
[16]薛盼盼,刘云,李辉,等. 基于时域扩张残差网络和双分支结构的人体行为识别[J]. 控制与决策,2022,37(11):2993-3002.
[17]NAVEENKUMAR M,DOMNIC S. Spatio temporal joint distance maps for skeleton-based action recognition using convolutional neural networks[J]. International Journal of Image and Graphics,2021,21(5):s0219467821400015.
[18]钱银中,沈一帆. 姿态特征与深度特征在图像动作识别中的混合应用[J]. 自动化学报,2019,45(3):626-636.
[19]YANG H Y,GU Y Z,ZHU J C,et al. PGCN-TCA:Pseudo graph convolutional network with temporal and channel-wise attention for skeleton-based action recognition[J]. IEEE Access,2020,8:10040-10047.
[20]SULTANI W,CHEN C,SHAH M,et al. Real-world anomaly detection in surveillance videos[C]//Proceedings of the 2018 IEEE/AVF Conference on Computer Vision and Pattern Recognition. Salt Lake City,USA:IEEE,2018.
[21]PENG W,SHI J G,ZHAO G Y. Spatial temporal graph deconvolutional network for skeleton-based human action recognition[J]. IEEE Signal Processing Letters,2021,28:244-248.
[22]YU W,YANG K Y,YAO H X,et al. Exploiting the complementary strengths of multi-layer CNN features for image retrieval[J]. Neurocomputing,2017,237:235-241.
[23]LIU J,SHAHROUDY A,WANG G,et al. Skeleton-based online action prediction using scale selection network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(6):1453-1467.
[24]PENG W,SHI J,VARANKA T,et al. Rethinking the ST-GCNs for 3D skeleton-based human action recognition[J]. Neurocomputing,2021,454:45-53.
[25]MIRZA A,SIDDIQI I. Recognition of cursive video text using a deep learning framework[J]. IET Image Processing,2020,14(14):3444-3455.
[26]ZHANG S Y,YANG Y,XIAO J,et al. Fusing geometric features for skeleton-based action recognition using multilayer LSTM networks[J]. IEEE Transactions on Multimedia,2018,20(9):2230-2343.
[27]CHEN C,LIU B,WAN S H,et al. An edge traffic flow detection scheme based on deep learning in an intelligent transportation system[J]. IEEE Transactions on Intelligent Transportation Systems,2021,22(3):1840-1852.
[28]张全贵,蔡丰,李志强. 基于耦合多隐马尔可夫模型和深度图像数据的人体动作识别[J]. 计算机应用,2018,38(2):454-457.
[29]LI C,XIE C Y,ZHANG B C,et al. Memory attention networks for skeleton-based action recognition[J]. IEEE Transactions on Neural Networks and Learning Systems,2022,33(9):4800-4814.
[30]LIU J,SHAHROUDY A,PEREZ M,et al. NTU RGB+D 120:A large-scale benchmark for 3D human activity understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(10):2684-2701.
[31]CAO Z,HIDALGO G,SIMON T,et al. Openpose:realtime multi-person 2D pose estimation using part affinity fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(1):172-186.
[32]HUANG L J,HUANG Y,OUYANG W L,et al. Part-level graph convolutional network for skeleton-based action recognition[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York,USA:AAAI,2020.
[33]HATIRNZA E,SAH M,DIREKOGLU C A. Novel framework and concept-based semantic search Interface for abnormal crowd behaviour analysis in surveillance videos[J]. Multimedia Tools & Applications,2020,79(25/26):17579-17617.
[34]王佳铖,鲍劲松,刘天元,等. 基于工件注意力的车间作业行为在线识别方法[J]. 计算机集成制造系统,2021,27(4):1099-1107.
[35]苏江毅,宋晓宁,吴小俊,等. 多模态轻量级图卷积人体骨架行为识别方法[J]. 计算机科学与探索,2021,15(4):733-742.
[36]JI S W,XU W,YANG M,et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(1):221-231.
[37]黄海新,王瑞鹏,刘孝阳. 基于3D卷积的人体行为识别技术综述[J]. 计算机科学,2020,47(增刊2):139-144.
[38]ZHANG B W,WANG Y D,HOU W X,et al. Flexmatch:Boosting semi-supervised learning with curriculum pseudo labeling[C]//Proceedings of the 35th Conference on Neural Information Processing System(NeurIPS 2021). Online,Canada:NeurIPS,2021.
[39]CHEN P,GAO Y,MA A J. Multi-level attentive adversarial learning with temporal dilation for unsupervised video domain adaptation[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Waikoloa,USA:IEEE,2022.