参考文献/References:
[1]刘浏,王东波. 命名实体识别研究综述[J]. 情报学报,2018,37(3):329-340.
[2]COLLINS M,SINGER Y. Unsupervised models for named entity classification[C]//Proceedings of the 1999 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora. College Park,MD,USA,1999.
[3]CUCERZAN S,YAROWSKY D. Language independent named entity recognition combining morphological and contextual evidence[C]//Empirical Methods in Natural Language Processing. 1999.
[4]LI Y,SONG L,ZHANG C. Sparse conditional hidden Markov model for weakly supervised named entity recognition[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York,NY,US:Association for Computing Machinery,2022:978-988.
[5]LIU P,GUO Y M,WANG F L,et al. Chinese named entity recognition:The state of the art[J]. Neurocomputing,2022,473:37-53.
[6]AN Y,XIA X Y,CHEN X L,et al. Chinese clinical named entity recognition via multi-head self-attention based BiLSTM-CRF[J]. Artificial Intelligence in Medicine,2022,127:102282.
[7]GOVINDARAJAN S,MUSTAFA M A,KIYOSOV S,et al. An optimization based feature extraction and machine learning techniques for named entity identification[J]. Optik,2023,272:170348.
[8]LIU Y X,WANG L,SHI T F,et al. Detection of spam reviews through a hierarchical attention architecture with N-gram CNN and Bi-LSTM[J]. Information Systems,2022,103:101865.
[9]ELANGOVAN A,LI Y,PIRES D E V,et al. Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT[J]. BMC Bioinformatics,2022,23(4):1-23.
[10]CHEN M J,LUO X,SHEN H L,et al. A novel named entity recognition scheme for steel e-commerce platforms using a lite BERT[J]. Computer Modeling in Engineering & Sciences,2021,129(1):47-63.
[11]孙振,李新福. 多特征融合的中文电子病历命名实体识别[J]. 计算机工程与应用,2023,59(23):1-10.
[12]雷松泽,刘博,王瑜菲,等. 结合多特征嵌入和多网络融合的中文医疗命名实体识别[J]. 电子与信息学报,2023,45(8):1-8.
[13]韩晓凯,岳颀,褚晶,等. 基于注意力增强的点阵Transformer的中文命名实体识别方法[J]. 厦门大学学报(自然科学版),2022,61(6):1062-1071.
[14]崔少国,陈俊桦,李晓虹. 融合语义及边界信息的中文电子病历命名实体识别[J]. 电子科技大学学报,2022,51(4):565-571.
[15]宋旭晖,于洪涛,李邵梅. 基于图注意力网络字词融合的中文命名实体识别[J]. 计算机工程,2022,48(10):298-305.
[16]CHEN C,KONG F. Enhancing entity boundary detection for better chinese named entity recognition[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Online,2021:20-25.
[17]GUI T,MA R T,ZHANG Q,et al. CNN-Based Chinese NER with lexicon rethinking[C]//Twenty-eighth International Joint Conference on Artificial Intelligence. Macao,China,2019:4982-4988.
[18]梁兵涛,倪云峰. 基于集成学习的中文命名实体识别方法[J]. 南京师大学报(自然科学版),2022,45(3):123-131.
[19]吴炳潮,邓成龙,关贝,等. 动态迁移实体块信息的跨领域中文实体识别模型[J]. 软件学报,2022,33(10):3776-3792.
[20]孔令巍,朱艳辉,张旭,等. 基于对抗训练的中文电子病历命名实体识别[J]. 湖南工业大学学报,2022,36(3):36-43.
[21]ZHANG Y,YANG J. Chinese NER using lattice LSTM[J]. arXiv Preprint arXiv:1805.02023,2018.
[22]PENG D L,WANG Y R,LIU C,et al. TL-NER:A transfer learning model for Chinese named entity recognition[J]. Information Systems Frontiers,2020,22(6):1291-1304.
[23]ZHU P,CHENG D W,YANG F Z,et al. Improving Chinese named entity recognition by large-scale syntactic dependency graph[J]. IEEE/ACM Transactions on Audio,Speech,and Language Processing,2022,30:979-991.
[24]CHEN T Y,HU Y M. Entity relation extraction from electronic medical records based on improved annotation rules and BiLSTM-CRF[J]. Annals of Translational Medicine,2021,9(18):1415.
[25]ZHU Y Y,WANG G X. CAN-NER:Convolutional attention network for Chinese named entity recognition[J]. arXiv Preprint arXiv:1904.02141,2020.
[26]石春丹,秦岭. 基于BGRU-CRF的中文命名实体识别方法[J]. 计算机科学,2019,46(9):237-242.
[27]LI J Y,FEI H,LIU J,et al. Unified named entity recognition as word-word relation classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence. 2022,36(10):10965-10973.