[1]刘海宏,鱼 明,刘 静,等.基于特征选择和深度学习模型的经济效益风险预测[J].南京师范大学学报(工程技术版),2024,24(04):087-92.[doi:10.3969/j.issn.1672-1292.2024.04.009]
 Liu Haihong,Yu Ming,Liu Jing,et al.Economic Benefit Risk Prediction Based on Feature Selection and Deep Learning Model[J].Journal of Nanjing Normal University(Engineering and Technology),2024,24(04):087-92.[doi:10.3969/j.issn.1672-1292.2024.04.009]
点击复制

基于特征选择和深度学习模型的经济效益风险预测
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
24卷
期数:
2024年04期
页码:
087-92
栏目:
计算机科学与技术
出版日期:
2024-12-15

文章信息/Info

Title:
Economic Benefit Risk Prediction Based on Feature Selection and Deep Learning Model
文章编号:
1672-1292(2024)04-0087-06
作者:
刘海宏12鱼 明3刘 静4吴睿辉12
(1.广州南洋理工职业学院经济管理学院,广东 广州 510900)
(2.马来西亚吉兰丹大学管理学院,马来西亚 吉兰丹州哥打巴鲁 16250)
(3.石河子大学经济与管理学院,新疆 石河子 832000)
(4.喀什大学计算机科学与技术学院,新疆 喀什 844000)
Author(s):
Liu Haihong12Yu Ming3Liu Jing4Wu Ruihui12
(1.School of Economics and Management,Guangzhou Nanyang Polytechnic College,Guangzhou 510900,China)
(2.School of Management,Universiti Malaysia of Kelantan,Kota Bharu,Kelantan 16250,Malaysia)
(3.School of Economics and Management,Shihezi University,Shihezi 832000,China)
(4.School of Computer Science and Technology,Kashi University,Kashi 840000,China)
关键词:
经济效益风险预测深度学习特征选择多元宇宙优化双向门控递归单元
Keywords:
financial risk predictiondeep learningfeature selectionmulti-verse optimizationbidirectional gated recurrent units
分类号:
TP391
DOI:
10.3969/j.issn.1672-1292.2024.04.009
文献标志码:
A
摘要:
大数据、云计算和人工智能技术的结合显著提升了企业金融数据处理能力. 为提高对中小企业经济效益风险预测的准确性和可靠性,提出了基于多元宇宙优化(multi-verse optimization,MVO)算法和双向门控递归单元(bidirectional gated recurrent units,BiGRU)的经济效益风险预测框架. 首先,对复杂金融数据进行特征归一化. 其次,使用MVO算法选出最优特征子集. 其后,利用BiGRU深度学习模型完成对中小企业经济效益风险的评估. 利用基于模型的序贯优化(sequential model-based algorithm configuration,SMAC)算法对BiGRU模型进行参数调优,优化BiGRU模型的参数配置,提高模型的性能和泛化能力. SMAC算法可以自动搜索参数空间中的最佳组合,从而找到最优的模型配置. 实验结果表明,所提混合模型在预测中小企业经济效益风险任务中表现出较高的准确性和预测能力,优于同类先进方法,证实了特征选择和深度学习模型在经济效益风险分析中的潜力和重要性.
Abstract:
The combination of big data,cloud computing and artificial intelligence technologies has significantly enhanced the capability of enterprise financial data processing. In order to improve the accuracy and reliability of financial risk prediction for small and medium-sized enterprises(SMEs),an financial risk prediction framework based on multi-verse optimization(MVO)algorithm and bidirectional gated recurrent units(BiGRU). Initially,complex financial data are subjected to feature normalization,followed by the selection of the optimal feature subset using the MVO algorithm. Subsequently,the evaluation of economic benefit risk for SMEs is accomplished using the BiGRU deep learning model. The sequential model-based algorithm configuration(SMAC)is employed to perform parameter tuning for the BiGRU model,optimizing its parameter configuration to enhance model performance and generalization ability. The SMAC algorithm automatically searches for the best combination of parameters in the parameter space,thereby identifying the optimal model configuration. Experimental results demonstrate that the proposed hybrid model exhibits higher accuracy and predictive capability in the task of predicting financial risk for SMEs,outperforming similar state-of-the-art methods,thereby confirming the potential and importance of feature selection and deep learning models in economic benefit risk analysis.

参考文献/References:

[1]PENG X,HUANG H. Fuzzy decision making method based on CoCoSo with critic for financial risk evaluation[J]. Technological and Economic Development of Economy,2020,26(4):695-724.
[2]杨德杰,章宁,袁戟,等. 基于堆栈降噪自编码网络的个人信用风险评估方法[J]. 计算机科学,2019,46(10):7-13.
[3]李庆涛,林培光,王基厚,等. 基于板块效应的深度学习股价走势预测方法[J]. 南京师范大学学报(工程技术版),2022,22(1):30-38.
[4]王立凯,曲维光,魏庭新,等. 基于深度学习的中文零代词识别[J]. 南京师范大学学报(工程技术版),2021,21(4):19-26.
[5]LI X,WANG J,YANG C. Risk prediction in financial management of listed companies based on optimized BP neural network under digital economy[J]. Neural Computing and Applications,2023,35(3):2045-2058.
[6]苏云鹏,杨宝臣,周方召. 我国市场债券收益的可预测性及其经济价值研究[J]. 管理科学学报,2019,22(4):27-52.
[7]KUMAR D,SARANGI P K,VERMA R. A systematic review of stock market prediction using machine learning and statistical techniques[J]. Materials Today:Proceedings,2022,49(1):3187-3191.
[8]YANG S. A novel study on deep learning framework to predict and analyze the financial time series information[J]. Future Generation Computer Systems,2021,125(1):812-819.
[9]ZHANG Y A,YAN B B,AASMA M. A novel deep learning framework:Prediction and analysis of financial time series using CEEMD and LSTM[J]. Expert Systems with Applications,2020,159(1):113609.
[10]METAWA N,PUSTOKHINA I V,PUSTOKHIN D A,et al. Computational intelligence-based financial crisis prediction model using feature subset selection with optimal deep belief network[J]. Big Data,2021,9(2):100-115.
[11]刘建伟,赵会丹,罗雄麟,等. 深度学习批归一化及其相关算法研究进展[J]. 自动化学报,2020,46(6):30-38.
[12]ABUALIGAH L. Multi-verse optimizer algorithm:A comprehensive survey of its results,variants,and applications[J]. Neural Computing and Applications,2020,32(16):12381-12401.
[13]牛红丽,赵亚枝. 利用Bagging算法和GRU模型预测股票价格指数[J]. 计算机工程与应用,2022,58(12):132-138.
[14]方娜,余俊杰,李俊晓,等. 基于CNN-BIGRU-ATTENTION的短期电力负荷预测[J]. 计算机仿真,2022,39(2):40-44.
[15]WU J,CHEN S P,LIU X Y. Efficient hyperparameter optimization through model-based reinforcement learning[J]. Neurocomputing,2020,409(1):381-393.
[16]ALAM T M,SHAUKAT K,HAMEED I A,et al. An investigation of credit card default prediction in the imbalanced datasets[J]. IEEE Access,2020,8(1):201173-201198.
[17]DASTILE X,CELIK T. Making deep learning-based predictions for credit scoring explainable[J]. IEEE Access,2021,9(1):50426-50440.

相似文献/References:

[1]程显毅,胡海涛,季国华,等.基于深度学习监控场景下的多尺度目标检测算法研究[J].南京师范大学学报(工程技术版),2018,18(03):033.[doi:10.3969/j.issn.1672-1292.2018.03.005]
 Cheng Xianyi,Hu Haitao,Ji Guohua,et al.Research on Algorithm of Multi-Scale Target DetectionBased on Deep Learning in Monitoring Scenario[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(04):033.[doi:10.3969/j.issn.1672-1292.2018.03.005]
[2]陈 扬,曾 诚,程 成,等.一种基于CNN的足迹图像检索与匹配方法[J].南京师范大学学报(工程技术版),2018,18(03):039.[doi:10.3969/j.issn.1672-1292.2018.03.006]
 Chen Yang,Zeng Cheng,Cheng Cheng,et al.A CNN-based Approach to Footprint Image Retrieval and Matching[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(04):039.[doi:10.3969/j.issn.1672-1292.2018.03.006]
[3]王俊淑,张国明,胡 斌.基于深度学习的推荐算法研究综述[J].南京师范大学学报(工程技术版),2018,18(04):033.[doi:10.3969/j.issn.1672-1292.2018.04.006]
 Wang Junshu,Zhang Guoming,Hu Bin.A Survey of Deep Learning Based Recommendation Algorithms[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(04):033.[doi:10.3969/j.issn.1672-1292.2018.04.006]
[4]郝 坤,张天坤,史振威.基于时空特征的热带气旋强度预测方法[J].南京师范大学学报(工程技术版),2019,19(03):001.[doi:10.3969/j.issn.1672-1292.2019.03.001]
 Hao Kun,Zhang Tiankun,Shi Zhenwei.An Tropical Cyclone Intensity Prediction MethodBased on Spatial-Temporal Features[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(04):001.[doi:10.3969/j.issn.1672-1292.2019.03.001]
[5]任媛媛,张显峰,马永建,等.基于卷积神经网络的无人机遥感影像农村建筑物目标检测[J].南京师范大学学报(工程技术版),2019,19(03):029.[doi:10.3969/j.issn.1672-1292.2019.03.005]
 Ren Yuanyuan,Zhang Xianfeng,Ma Yongjian,et al.Target Detection of Rural Buildings in UAV Remote Sensing ImagesBased on Convolutional Neural Network[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(04):029.[doi:10.3969/j.issn.1672-1292.2019.03.005]
[6]许博鸣,刘晓峰,业巧林,等.基于卷积神经网络面向自然场景建筑物识别技术的移动端应用[J].南京师范大学学报(工程技术版),2019,19(03):037.[doi:10.3969/j.issn.1672-1292.2019.03.006]
 Xu Boming,Liu Xiaofeng,Ye Qiaolin,et al.A Convolutional Neural Network Based on Mobile Application forIdentification of Buildings in Natural Scene[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(04):037.[doi:10.3969/j.issn.1672-1292.2019.03.006]
[7]吴燕如,珠 杰,管美静.基于深度学习的藏文现代印刷物版面检测技术研究[J].南京师范大学学报(工程技术版),2021,21(01):044.[doi:10.3969/j.issn.1672-1292.2021.01.007]
 Wu Yanru,Zhu Jie,Guan Meijing.Research on Layout Inspection Technology of ModernTibetan Prints Based on Deep Learning[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(04):044.[doi:10.3969/j.issn.1672-1292.2021.01.007]
[8]梁秦嘉,刘 怀,陆 飞.基于改进YOLOv3模型的交通视频目标检测算法研究[J].南京师范大学学报(工程技术版),2021,21(02):047.[doi:10.3969/j.issn.1672-1292.2021.02.008]
 Liang Qinjia,Liu Huai,Lu Fei.Traffic Video Target Detection Algorithm Based on Improved YOLOv3[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(04):047.[doi:10.3969/j.issn.1672-1292.2021.02.008]
[9]苏 叶,李 婧,徐寅林.手骨X光片骨龄预测中图像预处理的研究[J].南京师范大学学报(工程技术版),2021,21(02):054.[doi:10.3969/j.issn.1672-1292.2021.02.009]
 Su Ye,Li Jing,Xu Yinlin.Research on Image Preprocessing in Predicting the Bone Age ofHand Bone X-ray Films[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(04):054.[doi:10.3969/j.issn.1672-1292.2021.02.009]
[10]王立凯,曲维光,魏庭新,等.基于深度学习的中文零代词识别[J].南京师范大学学报(工程技术版),2021,21(04):019.[doi:10.3969/j.issn.1672-1292.2021.04.004]
 Wang Likai,Qu Weiguang,Wei Tingxin,et al.Identification of Chinese Zero Pronouns Based on Deep Learning[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(04):019.[doi:10.3969/j.issn.1672-1292.2021.04.004]

备注/Memo

备注/Memo:
收稿日期:2024-05-14.
基金项目:广东省教育厅项目(2021GXJK595、2021TSZK021)、广东省哲学社会科学规划项目(GD22XYJ28).
通讯作者:吴睿辉,副教授,博士,研究方向:数字经济、人工智能. E-mail:liu8928114@sina.com
更新日期/Last Update: 2024-12-15