[1]余海群,吴大建.椭圆截面活性银纳米管表面等离激元受激辐射放大研究[J].南京师范大学学报(工程技术版),2016,16(02):066.[doi:10.3969/j.issn.1672-1292.2016.02.011]
 Yu Haiqun,Wu Dajian.SPASER Properties of Active Silver Elliptical Nanotubes[J].Journal of Nanjing Normal University(Engineering and Technology),2016,16(02):066.[doi:10.3969/j.issn.1672-1292.2016.02.011]
点击复制

椭圆截面活性银纳米管表面等离激元受激辐射放大研究
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
16卷
期数:
2016年02期
页码:
066
栏目:
材料工程
出版日期:
2016-06-30

文章信息/Info

Title:
SPASER Properties of Active Silver Elliptical Nanotubes
作者:
余海群吴大建
江苏大学理学院,江苏 镇江 212013
Author(s):
Yu HaiqunWu Dajian
Faculty of Science,Jiangsu University,Zhenjiang 212013,China
关键词:
表面等离激元受激辐射放大银纳米管增益介质有限元方法
Keywords:
SPASERsilver nanotubegain mediafinite element method
分类号:
O539
DOI:
10.3969/j.issn.1672-1292.2016.02.011
文献标志码:
A
摘要:
基于有限元方法研究了内核包含活性介质的椭圆截面银纳米管的表面等离激元受激辐射放大(SPASER)特性. 研究发现,在电场偏振方向与椭圆长轴之间的夹角θ为0°时,当银纳米管活性内核的增益系数k增加到0.281 8,将在639.3 nm波长位置处产生表面等离激元(SP)偶极超共振;此时,在银纳米管表面可获得的表面增强拉曼因子可达到约2.56×1018,其足以满足单分子检测的要求. 在θ = 90°时,当k值增加到0.081 7,将在742.3 nm波长位置处发现SP偶极超共振. 此外,当θ = 0°时,银纳米管的SPASER增益阈值将随着银壳层厚度的减小而逐渐减小;当θ = 90°时,银纳米管的SPASER增益阈值将随着银壳层厚度的减小而逐渐增加. 当θ = 45°时,随着内核增益系数变大,将逐渐在两不同的临界波长位置观察到SPASER现象,因而具有较好的双频特性.
Abstract:
SPASER(Surface plasmon amplification by stimulated emission of radiation)properties of active silver elliptical nanotubes have been investigated by using the finite element method. When the angle θ between the excitation polarization and the long-axis of the ellipse is fixed at 0°,as the gain coefficient k increases to 0.281 8,a super-resonance can be observed at the wavelength of 639.3 nm in the active elliptical silver nanotube. Meanwhile,the maximal enhancement factor of surface enhanced Raman scattering can reach about 2.56×1018,which is high enough for the single molecule detection. As θ=90°,another super-resonance can be found in the active elliptical silver nanotube at the wavelength of 742.3 nm when the gain coefficient increases to 0.081 7. With decreasing the shell thickness,the gain threshold of the super-resonance of the silver elliptical nanotube with θ=0° decreases while the gain threshold increases for θ=90°. We have further found that when θ=45°,the two super-resonances can be observed in the active elliptical silver nanotube at two critical wavelengths with increasing the gain coefficient.

参考文献/References:

[1] FONTANA J,RATNA B R. Highly tunable gold nanorod dimer resonances mediated through conductive junctions[J]. Appl Phys Lett,2014,105(1):011 107.
[2] SHIRZADITABAR F,SALIMINASAB M. Geometrical parameters effects on local electric field enhancement of silver-dielectric-silver multilayer nanoshell[J]. Phys Plasmas,2013,20(20):416-423.
[3] HUANG C J,YE J,WANG S,et al. Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection[J]. Appl Phys Lett,2012,100(17):173 114.
[4] WU D J,JIANG S M,CHENG Y,et al. Fano-like resonance in symmetry-broken gold nanotube dimer[J]. Opt Express,2012,20(24):26 559.
[5] YE F,BURNS M J,NAUGHTON M J. Structured metal thin film as an asymmetric color filter:the forward and reverse plasmonic halos[J]. Sci Rep-UK,2014(4):7 267.
[6] KELLY K L,CORONADO E,ZHAO L L,et al. The optical properties of nanoparticles:the influence of size,shape and dielectric environment[J]. J Phys Chem B,2003,107(3):668-677.
[7] FUTAMATA M,MARUYAMA Y,LSHIKAWA M. Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method[J]. J Phys Chem B,2003,107(31):7 607-7 617.
[8] FURINI L N,SANCHEZ C S,ISABEL L T,et al. Detection and quantitative analysis of carbendazim herbicide on Ag nanoparticles via surface-enhanced Raman scattering[J]. J Raman Spectrosc,2015,46(11):1 095-1 101.
[9] TRIPATHI L N,PRAVEENA M,VALSON P,et al. Long range emission enhancement and anisotropy in coupled quantum dots induced by aligned gold nanoantenna[J]. Appl Phys Lett,2014,105(16):163 106.
[10] VOLPATI D,SPADA E R,CID C C P,et al. Exploring copper nanostructures as highly uniform and reproducible substrates for plasmon-enhanced fluorescence[J]. Analyst,2014,140(2):476-482.
[11] BERGMAN D J,STOCKMAN M I. Surface plasmon amplification by stimulated emission of radiation:quantum generation of coherent surface plasmons in nanosystems[J]. Phys Rev Lett,2003,90:027 402.
[12] STOCKMAN M I. Spaser action,loss compensation,and stability in plasmonic systems with gain[J]. Phys Rev Lett,2011,106:156 802.
[13] PAN J,CHEN Z,CHEN J,et al. Low-threshold plasmonic lasing based on high-Q dipole void mode in a metallic nanoshell[J]. Opt Lett,2012,37(1):1 181-1 183.
[14] LIU S Y,LI J F,ZHOU F,et al. Efficient surface plasmon amplification from gain-assisted gold nanorods[J]. Opt Lett,2011,36(7):1 296.
[15] DING P,CAI G W,WANG J Q,et al. Low-threshold resonance amplification of out-of-plane lattice plasmons in active plasmonic nanoparticle arrays[J]. J Optics-UK,2014,16(6):065 003.
[16] WU D J,CHEN Y,WU X W,et al. An active metallic nanomatryushka with two similar super-resonances[J]. J Appl Phys,2014,116(1):013 502.
[17] LI Z Y,XIA Y N. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering[J]. Nano Lett,2010,10(1):243-249.
[18] NOGINOV M A,ZHU G,BELGRAVE A M,et al. Demonstration of a spaser-based nanolaser[J]. Nature,2009,460(7 259):1 110-1 112.
[19] BAI J,TOWE E. Unified model for analysis of light amplification in rare-earth doped fibers[J]. J Opt Soc Am B,2014,31(11):2 809-2 816.
[20] PLUM E,FEDOTOV V A,KUO P,et al. Towards the lasing spaser:controlling metamaterial optical response with semiconductor quantum dots[J]. Opt Express,2009,17(17):8 548-8 551.
[21] VASILEIOS S,STAMATIOS A,NIKOLAOS K,et al. Modal analysis of graphene microtubes utilizing a two-dimensional vectorial finite element method[J]. Appl Phys A,2016,122(4):1-7.
[22] GORMAN T,HAXHA S. Design and optimisation of integrated hybrid surface plasmon biosensor[J]. Opt Commun,2014,325:175-178.
[23] BOHERMAN C F,HUFFMAN D R. Absorption and scattering of light by small particles[M]. New York:Wiley,1983
[24] ZHELUDEV N I,PROSVIRNIN S L,PAPASIMAKIS N,et al. Lasing spaser[J]. Nat Photonics,2008,2(6):351-354.
[25] STOCKMAN M I. Spaser as nanoscale quantum generator and ultrafast amplifier[J]. J Optics-UK,2010,12:024 004.
[26] TAO Y F,GUO Z Y,SUN Y X,et al. Silver sphere nanoshells coated gain-assisted ellipsoidal silica core for low-threshold surface plasmon amplification[J]. Opt Commun,2015,355:580-585.
[27] NIE S M,EMERY S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science,1997,275:1 102-1 106.
[28] ZHANG H P,ZHOU J,ZOU W B,et al. Surface plasmon amplification characteristics of an active three-layer nanoshell-based spaser[J]. J Appl Phys,2012,112(7):074 309.

备注/Memo

备注/Memo:
收稿日期:2016-04-15. 
基金项目:江苏大学研究生科研创新计划(KYXX_0037). 
通讯联系人:余海群,硕士研究生,研究方向:表面等离激元光子技术、纳米光学. E-mail:384605769@qq.com
更新日期/Last Update: 2016-06-30