[1]王耀达,闵富红,周琪,等.含功率扰动的3节点电力系统7阶模型混沌振荡分析[J].南京师范大学学报(工程技术版),2018,(01):001.[doi:10.3969/j.issn.1672-1292.2018.01.001]
 Wang Yaoda,Min Fuhong,Zhou Qi,et al.Analysis on Chaotic Oscillation in the Seven-order Model ofThree-node Power System with Power Disturbance[J].Journal of Nanjing Normal University(Engineering and Technology),2018,(01):001.[doi:10.3969/j.issn.1672-1292.2018.01.001]
点击复制

含功率扰动的3节点电力系统7阶模型混沌振荡分析
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年01期
页码:
001
栏目:
电气与电子工程
出版日期:
2018-03-31

文章信息/Info

Title:
Analysis on Chaotic Oscillation in the Seven-order Model ofThree-node Power System with Power Disturbance
文章编号:
1672-1292(2018)01-0001-10
作者:
王耀达闵富红周琪胡振鑫
南京师范大学电气与自动化工程学院,江苏 南京 210042
Author(s):
Wang YaodaMin FuhongZhou QiHu Zhenxin
School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210042,China
关键词:
3节点电力系统7阶电力系统分岔功率扰动
Keywords:
three-node power systemseven-order power systembifurcationpower disturbance
分类号:
TP271
DOI:
10.3969/j.issn.1672-1292.2018.01.001
文献标志码:
A
摘要:
混沌振荡时电力系统的固有现象对整个互联电网具有极大危害. 基于3节点电力系统推导其7阶数学模型,利用分岔图、相图分析了3节点电力系统的动力学特性,研究了系统参数变化对系统运行状态的影响. 随后,引入电磁功率和负载功率扰动项,使得系统模型更接近实际情况,研究系统在扰动幅值和扰动频率影响下的动力学行为变化过程,并分别给出了对应的分岔图和特定参数下的系统相图. 实验表明,当扰动项的幅值与频率处于特定范围内时,系统能够从混沌运动状态切换至周期运动状态.
Abstract:
Chaotic oscillation is an inherent phenomenon of nonlinear power system,which is very harmful for the large-scale interconnected power grid. Based on the three-node power system,a seven-order mathematical model of this system is deduced in this paper. The dynamic characteristics of the three-node power system are analyzed through bifurcation diagrams and phase portraits,and the influence of system parameters varying on the operation states are studied as well. Then the electromagnetic power disturbance and the load power disturbance are introduced into the system model,which makes the model closer to the actual situation.The changing process in dynamic behaviors of the system under the impact of the disturbance amplitude and frequency are illustrated with bifurcation diagrams and phase portraits for specific parameters are given respectively. Moreover,it is found that the operating state of the system can reach periodic motions from the chaotic motions when the amplitude and frequency of perturbation terms are within certain ranges.

参考文献/References:

[1] 卢强,梅生伟,孙元章. 电力系统非线性控制[M]. 北京:清华大学出版社,2008.
LU Q,MEI S W,SUN Y Z. Nonlinear Control of Power System[M]. Beijing:Tsinghua University Press,2008.(in Chinese)
[2]KOPELL N,WASHBURN R J. Chaotic motions in the two-degree-of-freedom swing equations[J]. IEEE transactions on circuits and system,1982,29(11):738-746.
[3]CHIANG H D,DOBSON I,THOMAS R J,et al. On voltage collapse in electric power systems[J]. IEEE transactions on power system,1990,5(2):342-349.
[4]CHIANG H D,LIU C W,VARAIYA P P,et al. Chaos in a simple power system[J]. IEEE transactions on power system,1993,8(4):1 407-1 417.
[5]RAJESH K G,PADIYAR K R. Bifurcation analysis of a three node power system with detailed models[J]. International journal of electrical power and energy systems,1999,21(5):375-393.
[6]RAJESH K G,PADIYAR K R. Analysis of bifurcations in a power system model with excitation limits[J]. International journal of bifurcation and chaos,2001,11(9):2 509-2 516.
[7]王庆红,周双喜. 考虑励磁限制的典型三节点电力系统分岔分析[J]. 华北电力大学学报,2004,31(1):5-14.
WANG Q H,ZHOU S X. Bifurcation analysis with excitation limits in classic three-node power system[J]. Journal of North China electric power university,2004,31(1):5-14.(in Chinese)
[8]WANG X D,CHEN Y S,HAN G,et al. Nonlinear dynamic analysis of a single-machine infinite-bus power system[J]. Applied mathematical modelling,2014,39(10/11):2 951-2 961.
[9]李国庆,张浩,李江,等. 基于分岔理论研究励磁饱和环节对系统电压稳定的影响[J]. 电力自动化设备,2015,35(3):1-5.
LI G Q,ZHANG H,LI J,et al. Influence of excitation saturation element on power system voltage stability based on bifurcation theory[J]. Electric power automation equipment,2015,35(3):1-5.(in Chinese)
[10]郝建红,汪筱巍. 互联混沌电力系统的自适应backstepping滑模鲁棒控制[J]. 河北师范大学学报(自然科学版),2016,40(3):220-227.
HAO J H,WANG X W. Adaptive backstepping sliding mode robust control of interconnected chaotic power system[J]. Journal of Hebei normal university(natural science edition),2016,40(3):220-227.(in Chinese)
[11]NI J K,LIU L,LIU C X,et al. Fixed-time dynamic surface high-order sliding mode control for chaotic oscillation in power system[J]. Nonlinear dynamics,2016,86(1):401-420.

备注/Memo

备注/Memo:
收稿日期:2017-09-14.
基金项目:国家自然科学基金(51475246)、江苏省自然科学基金(BK20131402).
通讯联系人:闵富红,教授,硕士生导师,研究方向:非线性系统的混沌控制与同步. E-mail:minfuhong@njnu.edu.cn
更新日期/Last Update: 1900-01-01