[1]张海勇,黄 承,葛晋群,等.特高频反向电流对结构参数分析与设计[J].南京师范大学学报(工程技术版),2018,(01):024.[doi:10.3969/j.issn.1672-1292.2018.01.003]
 Zhang Haiyong,Huang Cheng,Ge Jinqun,et al.Analysis and Design on Structure Parameters ofUHF Oppositely Directed Currents[J].Journal of Nanjing Normal University(Engineering and Technology),2018,(01):024.[doi:10.3969/j.issn.1672-1292.2018.01.003]
点击复制

特高频反向电流对结构参数分析与设计
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年01期
页码:
024
栏目:
电气与电子工程
出版日期:
2018-03-31

文章信息/Info

Title:
Analysis and Design on Structure Parameters ofUHF Oppositely Directed Currents
文章编号:
1672-1292(2018)01-0024-06
作者:
张海勇12黄 承3葛晋群12唐万春124王 毅5
(1.南京师范大学物理科学与技术学院,江苏 南京 210023)(2.南京师范大学江苏省光电技术重点实验室,江苏 南京 210023)(3.南京理工大学电光学院,江苏 南京 210094)(4.江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023)(5.南京航空航天大学雷达成像与微波光子学教育部重点实验室,江苏 南京 211106)
Author(s):
Zhang Haiyong12Huang Cheng3Ge Jinqun12Tang Wanchun124Wang Yi5
(1.School of Physics Science and Technology,Nanjing Normal University,Nanjing 210023,China)(2.Jiangsu Key Laboratory on Opto-electronics Technology,Nanjing Normal University,Nanjing 210023,China)(3.School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)(4.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing 210023,China)(5.Key Laboratory of Radar Imaging and Microwave Photonics of Ministry of Education,Nanjing University ofAeronautics and Astronauts,Nanjing 211106,China)
关键词:
射频识别特高频反向电流对阅读器天线近场
Keywords:
RFIDUHFODCsreader antennanear-field
分类号:
TN911
DOI:
10.3969/j.issn.1672-1292.2018.01.003
文献标志码:
A
摘要:
对基于反向电流对(oppositely directed currents,ODCs)技术的特高频(ultra-high frequency,UHF)近场(near field)射频识别(radio frequency identification,RFID)阅读器天线的结构参数对两单元上电流分布的影响进行了深入的研究. 天线的激励单元长度与工作频率给定时,寄生单元长度和两单元间距决定了天线两单元上电流相位差. 当寄生单元的长度与两单元间距之间达到某一对应关系时,两单元上形成反向电流. 在进行反向电流对设计时,天线的结构参数影响天线周围磁场分布,可根据实际所需要的磁场及识别区域的大小,灵活选择寄生单元的长度及其对应的单元间距. 当两单元间距较小时,寄生单元长度取λ/2为宜; 当两单元间距较大时,寄生单元长度的取值范围也较大. 最终给出两组设计实例验证了该设计方法的合理性.
Abstract:
In this paper,based on the oppositely directed currents(ODCs),a near field Radio Frequency Identification(RFID)reader antenna at ultra-high frequency(UHF)band is introduced. How structure parameters of antenna affects current distribution along the two elements are studied further. Once the length of the excited element and the operating frequency is given,the phase difference of currents along the two elements is determined by the length of parasitic element and the pitch between the two elements. To realize the ODCs,the length of the parasitic element and the distance between two elements should satisfy a corresponding relationship. With different requirements of the magnetic field distribution and the recognization areas,the length of the parasitic element with corresponding distance between two elements can be chosen flexibly. When the distance between the two elements is small,the length of parasitic element close to λ/2 is suitable. While when the distance is large,the length of parasitic element can be chosen among a large range. Finally,two examples are given to prove that the method introduced in this paper is reasonable.

参考文献/References:

[1] LI X,YANG Z. Dual-printed-dipoles reader antenna for UHF near-field RFID applications[J]. IEEE antennas & wireless propagation letters,2011,10(1):239-242.
[2]NIKITIN P V,RAO K V S,LAZAR S. An overview of near field UHF RFID[C]//IEEE International Conference on Rfid.Grapevine,TX,USA:IEEE,2007:167-174.
[3]PARTRIDGE A R. Accuracy in action:item-level RFID takes off[J]. Apparel magazine,2013,54(11):30.
[4]FINKENZELLER K. RFID handbook:fundamentals and applications in contactless smart cards and identification[M]. 2nd ed. West Sussex:John Wiely & Sons Ltd,2003.
[5]童廷洋,马振洲. 超高频RFID标签一致性的近场检测技术[J]. 电子技术应用,2013,39(4):62-64.
TONG T Y,MA Z Z. Near field detection core technology for UHF RFID tag conformity[J]. Application of electronic technology,2013,39(4):62-64.(in Chinese)
[6]ZENG Y,CHEN Z N,QING X,et al. Modeling and characterization of zero-phase-shift lines and optimization of electrically large ZPSL loop antennas for near-field systems[J]. IEEE transactions on antennas & propagation,2016,64(11):4 587-4 594.
[7]ZENG Y,CHEN Z N,QING X,et al. Design of a near-field nonperiodic zero-phase-shift-line(ZPSL)loop antenna with a full dispersion characterization[J]. IEEE transactions on antennas & propagation,2017,65(5):2 666-2 670.
[8]ZENG Y,CHEN Z N,QING X,et al. An artificial magnetic conductor backed electrically large zero-phase-shift line grid-loop near-field antenna[J]. IEEE transactions on antennas & propagation,2017,65(4):1 599-1 606.
[9]CHO C,RYOO J,PARK I,et al. Design of a novel ultra-high frequency radio-frequency identification reader antenna for near-field communications using oppositely directed currents[J]. IET microwaves antennas & propagation,2010,4(10):1 543-1 548.
[10]DING X,WU Q,ZHANG K,et al. A magnetic coupling dipole for UHF near-field RFID reader[J]. IEEE transactions on magnetics,2012,48(11):4 305-4 308.
[11]SHEN L W,ZHUANG W,TANG W C,et al. Achieving uniform perpendicular magnetic field distribution for near-field ultra-high frequency radio-frequency identification[J]. IET microwaves antennas & propagation,2016,10(2):215-222.
[12]SHEN L W,HUANG C,WANG C,et al. A Yagi-Uda antenna with load and additional reflector for near-field UHF RFID[J]. IEEE antennas & wireless propagation letters,2016,16(1):728-731.
[13]BALANIS C A. Antenna theory:analysis and design[M]. New Jersey:Wiley-Interscience,2005.
[14]COX C R. Mutual impedance between vertical antennas of unequal heights[J]. Proceedings of the IRE,1947,35(11):1 367-1 370.

备注/Memo

备注/Memo:
收稿日期:2018-02-28.
基金项目:国家自然基金(61571232)、中央高校基本科研业务费专项资助项目(NJ20150019).
通讯联系人:唐万春,教授,博士生导师,研究方向:射频电路与系统、电磁场数值计算等. E-mail:eewctang@njnu.edu.cn
更新日期/Last Update: 1900-01-01