[1]赵夫群.曲面的点云模型优化配准方法[J].南京师范大学学报(工程技术版),2018,(01):064.[doi:10.3969/j.issn.1672-1292.2018.01.009]
 Zhao Fuqun.Optimal Registration Method of Surface Point Cloud Model[J].Journal of Nanjing Normal University(Engineering and Technology),2018,(01):064.[doi:10.3969/j.issn.1672-1292.2018.01.009]
点击复制

曲面的点云模型优化配准方法
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年01期
页码:
064
栏目:
计算机工程
出版日期:
2018-03-31

文章信息/Info

Title:
Optimal Registration Method of Surface Point Cloud Model
文章编号:
1672-1292(2018)01-0064-07
作者:
赵夫群12
1.咸阳师范学院教育科学学院,陕西 咸阳 712000; 2.西北大学信息科学与技术学院,陕西 西安 710127
Author(s):
Zhao Fuqun12
(1.School of Education Science,Xianyang Normal University,Xianyang 712000,China)(2.Shool of Information Science and Technology,Northwest University,Xi’an 710127,China)
关键词:
曲面配准粗配准迭代最近点高斯概率动态迭代系数
Keywords:
surface registrationcoarse matchingiterative closest pointGaussian probabilityactive iterative coefficient
分类号:
TP391
DOI:
10.3969/j.issn.1672-1292.2018.01.009
文献标志码:
A
摘要:
针对覆盖率较低的曲面配准问题,提出一种先粗配再细配的点云模型配准方法. 首先,采用基于GH-LS3D(Gauss-Helmert least-squares 3D)的配准算法实现曲面的粗配准; 然后,在迭代最近点(iterative closest point,ICP)算法中引入高斯概率模型和动态迭代系数以提高算法的抗噪性和收敛速度,由此实现曲面的快速精确细配准. 实验结果表明,该优化配准方法能够实现曲面的精确配准,并在细配准阶段取得了较高的配准精度和收敛速度,是一种有效的曲面配准方法.
Abstract:
Aiming at the registration problem of 3D point cloud data models of surfaces with low overlapping,a registration method form coarse to fine is proposed. Firstly,based on Gauss-Helmert least-squares 3D(GH-LS3D),a registration algorithm is used to complete coarse registration. Secondly,an improved iterative closest point(ICP)algorithm which integrated Gaussian probability model and active iterative coefficient to ICP algorithm is proposed to improve the anti-noise capability and convergence rate,and the faster and more accurate registration of surfaces is achieved. The experimental results show that the proposed method can complete accurate surfaces registration,and obtain higher registration accuracy and convergence rate in fine registration stage. Therefore,the optimal registration method is an effective surface registration method.

参考文献/References:

[1] LIN S Z,WANG D J,ZHONG J R. Approach to reassembling virtual small bronze fragments using the curvature feature[J]. Journal of Xidian university,2016(46):12,151-156.
[2]ROTH J,TONG Y,LIU X. Adaptive 3D face reconstruction from unconstrained photo collections[J]. IEEE transactions on pattern analysis and machine intelligence,2017(99):2 127-2 141.
[3]汪前进,朱斌,李存华. 基于特征点的图像拼接方法的研究与应用[J]. 南京师范大学学报(工程技术版),2016,16(3):48-53.
WANG Q J,ZHU B,LI C H. Research and application of image stitching method based on feature points[J]. Journal of Nanjing normal university(engineering and technology edition),2016,16(3):48-53.(in Chinese)
[4]张天安,云挺,薛联凤,等. 基于骨架提取的树木主枝干三维重建算法[J]. 南京师范大学学报(工程技术版),2014,14(4):51-57.
ZHANG T A,YUN T,XUE L F,et al. Three-dimensional reconstruction algorithm of tree limbs based on skeleton extraction[J]. Journal of Nanjing normal university(engineering and technology edition),2014,14(4):51-57.(in Chinese)
[5]CROOK S,MEGHAN C,MAARTEN B,et al. Can a semi-automated surface matching and principal axis-based algorithm accurately quantify femoral shaft fracture alignment in six degrees of freedom[J]. Medical engineering and physics,2013,35(7):1 028-1 036.
[6]BABA T,MATSUOKA R,SHIRAI K,et al. Misaligned image integration with local linear model[J]. IEEE transactions on image processing,2016,25(5):2 035-2 044.
[7]BESL P J,MCKAY N D. A method for registration of 3-D shapes[J]. IEEE transactions on pattern analysis and machine intelligence,1992,14(2):239-256.
[8]王欣,张明明,于晓,等. 应用改进迭代最近点方法的点云数据配准[J]. 光学精密工程,2012,20(9):2 068-2 077.WANG X,ZHANG M M,YU X,et al. Point cloud registration based on improved iterative closest point method[J]. Optics and precision engineering,2012,20(9):2 068-2 077.(in Chinese)
[9]LI W,SONG P. A modified ICP algorithm based on dynamic adjustment factor for registration of point cloud and CAD model[J]. Pattern recognition letters,2015,65:88-94.
[10]MAVRIDIS P,AABDREDIS A,PAPAIOANNOU G. Efficient sparse ICP[J]. Computer aided geometric design,2015,35(C):16-26.
[11]DU S,LIU J,ZHANG C. Probability iterative closest point algorithm for m-D point set registration with noise[J]. Neurocomputing,2015,157(CAC):187-198.
[12]DU S,ZHENG N,XIONG L. Scaling iterative closest point algorithm for registration of m-D point sets[J]. Journal of visual communication and image representation,2010,21(5-6):442-452.
[13]GRUEN A,ACKA D. Least squares 3D surface and curve matching[J]. ISPRS J Photogramm Remote Sens,2005,59:151-174.
[14]Stanford University. The Stanford 3D Scanning Repository[EB/OL]. [2017-03-10]http://graphics.stanford.edu/data/3Dscanrep.

备注/Memo

备注/Memo:
收稿日期:2017-03-20.
基金项目:国家自然科学基金(61373117)、咸阳师范学院专项科研基金项目(XSYK17037)、咸阳师范学院青年骨干教师培养项目(XSYGG201621).
通讯联系人:赵夫群,博士研究生,讲师,研究方向:图形图像处理. E-mail:fuqunzhao@126.com
更新日期/Last Update: 1900-01-01