[1]金秋森,闵富红,吕晏旻.基于Lorenz系统的离散分析与FPGA实现[J].南京师范大学学报(工程技术版),2019,(01):029.[doi:10.3969/j.issn.1672-1292.2019.01.004]
 Jin Qiusen,Min Fuhong,Lü Yanmin.Discrete Analysis and FPGA Implementation Based on Lorenz System[J].Journal of Nanjing Normal University(Engineering and Technology),2019,(01):029.[doi:10.3969/j.issn.1672-1292.2019.01.004]
点击复制

基于Lorenz系统的离散分析与FPGA实现
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年01期
页码:
029
栏目:
电气与自动化工程
出版日期:
2019-03-30

文章信息/Info

Title:
Discrete Analysis and FPGA Implementation Based on Lorenz System
文章编号:
1672-1292(2019)01-0029-11
作者:
金秋森闵富红吕晏旻
南京师范大学南瑞电气与自动化学院,江苏 南京 210023
Author(s):
Jin QiusenMin FuhongLü Yanmin
School of NARI Electrical and Automation,Nanjing Normal University,Nanjing 210023,China
关键词:
Lorenz系统离散化FPGAVerilog HDL
Keywords:
Lorenz systemdiscretizationfield-programmable gate array(FPGA)Verilog HDL
分类号:
TP391.3
DOI:
10.3969/j.issn.1672-1292.2019.01.004
文献标志码:
A
摘要:
以现场可编程门阵列(field-programmable gate array,FPGA)和IEEE754标准为基础,设计出能产生Lorenz混沌信号的数字电路. 首先,根据Euler法、Runge-Kutta法,分别将系统方程离散化. 然后,利用Verilog HDL语言编写程序,运用Xilinx软件、Modelsim软件将程序综合、编译、检测. 最终,将生成的bit文件烧录到FPGA中,通过示波器观测系统的混沌态与非混沌态. 对比论证不同算法的实现效果,得出二阶Runge-Kutta法是实现经典混沌系统的FPGA仿真的最优离散方法,为后续混沌信号在数字化领域的进一步发展提供参考和依据.
Abstract:
Based on the field-programmable gate array(FPGA)and IEEE754 standard,digital circuits capable of generating Lorenz chaotic signals are designed and demonstrated. Firstly,the system equations are discretized according to the Euler method and the Runge-Kutta method. Then,the program is written in Verilog HDL language,and the program is integrated,compiled and tested through Xilinx software and Modelsim software. Finally,the generated bit file is burned into FPGA to observe the chaotic and non-chaotic states of the system through an oscilloscope. By comparing and demonstrating the implementation effect of different algorithms,it is concluded that the second-order Runge-Kutta method is the optimal discrete method to realize the FPGA simulation of the classical chaotic system,providing reference and basis for the further development of the subsequent chaotic signal in the digital field.

参考文献/References:

[1] PRICE D C,KOCZ J,BAILES M,et al. Introduction to the special issue on digital signal processing in radio astronomy[J]. Journal of astronomical instrumentation,2017,5(4):1602002.
[2]MILIK A. On hardware synthesis and implementation of PLC programs in FPGAs[J]. Microprocessors and microsystems,2016,44(C):2-16.
[3]张钰. 基于FPGA技术的多涡卷混沌信号发生器的研究[D]. 广州:广东工业大学,2007.
ZHANG Y. The research on multi-scroll chaotic signal generator based on FPGA technology[D]. Guangzhou:Guangdong University of Technology,2007.(in Chinese)
[4]王忠林,王光义. 基于FPGA的混沌系统设计与实现[J]. 计算机工程与设计,2009,30(14):3365-3366.
WANG Z L,WANG G Y. Design and implementation of chaotic system based on FPGA[J]. Computer engineering and design,2009,30(14):3365-3366.(in Chinese)
[5]刘师彤. 混沌同步保密通信的研究及DSP-Builder实现[D]. 长春:长春理工大学,2010.
LIU S T. Secure communication research and DSP-Builder implementation based on chaos synchromization theory[D]. Changchun:Changchun University of Science and Technology,2010.(in Chinese)
[6]袁泽世,李洪涛,朱晓华. 类Chen系统设计及其FPGA实现[J]. 南京理工大学学报(自然科学版),2015,39(3):323-329.
YUAN Z S,LI H T,ZHU X H. Design of Chen-like system and its FPGA implementation[J]. Journal of Nanjing university of science and technology(natural science edition),2015,39(3):323-329.(in Chinese)
[7]李登辉,闵富红,马美玲. 基于FPGA技术的混沌系统设计与实现[J]. 南京师范大学学报(工程技术版),2015,15(1):8-14.
LI D H,MIN F H,MA M L. The design and implementation of chaotic system based on FPGA technology[J]. Journal of Nanjing normal university(engineering and technology edition),2015,15(1):8-14.(in Chinese)
[8]王忠林,刘树堂. 一个切换Lorenz混沌系统的特性分析[J]. 重庆邮电大学学报(自然科学版),2017,29(1):68-74.
WANG Z L,LIU S T. Analysis of properties of a switched Lorenz type chaotic system[J]. Journal of Chongqing university of posts and telecommunications(natural science edition),2017,29(1):68-74.(in Chinese)
[9]GAO T G,CHEN G R,CHEN G R,et al. The generation and circuit implementation of a new hyper-chaos based upon Lorenz system[J]. Physics letters A,2016,361(1):78-86.(in Chinese)
[10]张昊. 基于不同耦合的复杂系统同步研究[D]. 大连:大连理工大学,2016.
ZHANG H. Synchronization studies of complex system with different couplings[D]. Dalian:Dalian University of Technology,2016.(in Chinese)
[11]NI J K,LIU L,LIU C X,et al. Fractional order fixed-time nonsingular terminal sliding mode synchronization and control of fractional order chaotic systems[J]. Nonlinear dynamics,2017,89(3):2065-2083.
[12]肖锋,张丽丽,冯飞. 混合混沌系统的并行多通道彩色图像加密[J]. 微电子学与计算机,2016,33(8):76-81.
XIAO F,ZHANG L L,FENG F. Parallel multi-channel color image encryption Based on hybrid chaotic system[J]. Microelectronics & computer,2016,33(8):76-81.(in Chinese)
[13]张民,李宗浩,高明. 基于Lorenz混沌的MIMO雷达信号设计及性能分析[J]. 系统工程与电子技术,2017,40(1):58-64.
ZHANG M,LI Z H,GAO M. Design and performance of MIMO radar signal based on Lorenz chaos[J]. Systems engineering and electronics,2017,40(1):58-64.(in Chinese)
[14]禹思敏. 混沌系统与混沌电路:原理、设计及其在通信中的应用[M]. 西安:西安电子科技大学出版社,2011.
YU S M. Chaotic systems and chaotic circuits:principle design and its application in communications[M]. Xi’an:Xidian University Press,2011.(in Chinese)

相似文献/References:

[1]李 蒙,宋春雨,谷静平,等.三维打印中的底层多边形优化[J].南京师范大学学报(工程技术版),2016,16(03):029.[doi:10.3969/j.issn.1672-1292.2016.03.005]
 Li Meng,Song Chunyu,Gu Jingping,et al.Underlying Polygon Optimization in Three Dimensional Printing[J].Journal of Nanjing Normal University(Engineering and Technology),2016,16(01):029.[doi:10.3969/j.issn.1672-1292.2016.03.005]

备注/Memo

备注/Memo:
收稿日期:2018-10-19.
基金项目:国家自然科学基金课题(61871230)、江苏省自然科学基金课题(BK2018021196)、中国江苏省研究生研究与创新实践项目(KYCX18_1220).
通讯联系人:闵富红,博士,教授,研究方向:非线性电路与系统. E-mail:minfuhong@njnu.edu.cn
更新日期/Last Update: 2019-03-30