[1]邱 雨,王延华,陈 西,等.句容小流域多环芳烃的沉积学记录及其源解析[J].南京师范大学学报(工程技术版),2020,(01):066-75.[doi:10.3969/j.issn.1672-1292.2020.01.010]
 Qiu Yu,Wang Yanhua,Chen Xi,et al.Sediment Records and Source Analysis of PolycyclicAromatic Hydrocarbons in Jurong Catchment[J].Journal of Nanjing Normal University(Engineering and Technology),2020,(01):066-75.[doi:10.3969/j.issn.1672-1292.2020.01.010]





Sediment Records and Source Analysis of PolycyclicAromatic Hydrocarbons in Jurong Catchment
邱 雨1王延华123陈 西1孙 恬1王方方1张茂恒13李春华4
(1.南京师范大学地理科学学院,江苏 南京 210023)(2.江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023)(3.南京师范大学虚拟地理环境教育部重点实验室,江苏 南京 210023)(4.中国环境科学研究院,北京 100012)
Qiu Yu1Wang Yanhua123Chen Xi1Sun Tian1Wang Fangfang1Zhang Maoheng13Li Chunhua4
(1.School of Geography,Nanjing Normal University,Nanjing 210023,China)(2.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing 210023,China)(3.Key Laboratory of Virtual Geographic Environmen
Jurongsmall catchmentpolycyclic aromatic hydrocarbonsvertical distributionsource identification
以位于经济发展迅速的秦淮河流域中的句容小流域为研究靶区,运用统计学方法及PMF模型手段对句容小流域多环芳烃(PAHs)进行源解析并初步评估其风险. 源解析结果表明,主成分和PMF模型分析的结果与分子比值法一致,都指示句容小流域PAHs主要来源于化石燃料高温燃烧,且第一输入源为尾气排放,第二输入源为煤炭燃烧. PMF模型的结果显示,小流域沉积物PAHs来源最多的是尾气(柴油和汽油燃烧)排放源(28.31%),其次为煤炭燃烧源(25.02%),之后依次为混合来源(14.83%)、焦炭燃烧源(14.60%)、石油燃烧源(12.07%)和生物质燃烧源(5.17%). 生态风险评价的结果显示,Ace、Ant和Flua 3种PAHs的浓度均值超出了生态效应区间低值的4.76、5.06和8.37倍,此外BaP和IcdP浓度的均值较高,存在生态风险. TEF的结果显示,小流域∑PAHs毒性当量浓度范围为3.29~757.77 ng/g,整体污染水平较高,BaP和IcdP的毒性当量浓度超过了100 ng/g,是句容小流域毒性当量的主要贡献.
In this study,Jurong small catchment,located in the Qinhuai River basin with rapid economic development,is taken as the research target area. Statistical analysis and the PMF model are used to analyze the sources of polycyclic aromatic hydrocarbons(PAHs)in Jurong catchment and a preliminary assessment of their risks is studied. The results of principal component analysis and PMF model analysis are consistent with the molecular ratio method,indicating that the PAHs in the catchment are mainly derived from high-temperature combustion of fossil fuels. The first input source is deduced to be the exhaust gas emission,and the second one is the coal combustion. The result of the PMF model shows that the dominant sources are tail gas(diesel and gasoline combustion)(28.31%),followed by coal combustion(25.02%)and mixed sources(14.83%). Coke combustion source(14.60%),petroleum combustion source(12.07%)and biomass combustion source(5.17%)are also the contributors to the sedimentary PAHs. The result of ERL/ERM shows that the average concentration of three PAHs of Ace,Ant and Flua exceed the low value of ecological effect interval by 4.76,5.06 and 8.37 times. In addition,the mean values of BaP and IcdP are higher,and there is an ecological risk. The result of TEF shows that the toxic equivalent concentration of ∑PAHs in the catchment ranges from 3.29 to 757.77 ng/g,and the overall pollution level is higher. The toxic equivalent concentration of BaP and IcdP exceeds 100 ng/g,which is the main toxic equivalent of Jurong small catchment.


[1] BASHEER C,OBBARD J P,LEE H K. Persistent organic pollutants in Singapore’s coastal marine environment:part Ⅱ,sediments[J]. Water Air & Soil Pollution,2003,149(1-4):315-325.
[2]郭建阳,廖海清,韩梅,等. 密云水库沉积物中多环芳烃的垂直分布、来源及生态风险评估[J]. 环境科学,2010,31(3):626-631.
[3]MACHADO K S,FIGUEIRA R C L,C?CCO L C,et al. Sedimentary record of PAHs in the Barigui River and its relation to the socioeconomic development of Curitiba,Brazil[J]. Science of the Total Environment,2014,482-483(1):42-52.
[4]BOLL E S,CHRISTENSEN J H,HOLM P E. Quantification and source identification of polycyclic aromatic hydrocarbons in sediment,soil,and water spinach from Hanoi,Vietnam.[J]. Journal of Environmental Monitoring(JEM),2008,10(2):261-269.
[5]HWANG H M,FOSTER G D. Characterization of polycyclic aromatic hydrocarbons in urban stormwater runoff flowing into the tidal Anacostia River,Washington DC,USA[J]. Environmental Pollution,2006,140(3):416-426.
[6]YANG H H,LO M Y,LAN C W,et al. Characteristics of trans,trans-2,4-decadienal and polycyclic aromatic hydrocarbons in exhaust of diesel engine fueled with biodiesel[J]. Atmospheric Environment,2007,41(16):3373-3380.
[7]朱利中,王静,杜烨,等. 汽车尾气中多环芳烃(PAHs)成分谱图研究[J]. 环境科学,2003,24(3):26-29.
[8]ZHANG K,WANG J Z,LIANG B,et al. Occurrence of polycyclic aromatic hydrocarbons in surface sediments of a highly urbanized river system with special reference to energy consumption patterns[J]. Environmental Pollution,2011,159(6):1510-1515.
[9]曹梦思,王君,张立实,等. 食品中多环芳烃的研究现状[J]. 卫生研究,2015,44(1):151-157.
[10]王桂山,仲兆庆,王福涛. PAH(多环芳烃)的危害及产生的途径[J]. 山东环境,2001(2):41.
[11]柯艳萍. 神农架大九湖湿地多环芳烃分布及源解析[D]. 武汉:中国地质大学,2013.
[12]崔骏,张伟莛,王延华,等. 滇池小流域多环芳烃的沉积学记录及其源解析[J]. 水土保持研究,2018,25(1):202-207.
[13]QIN N,HE W,KONG X Z,et al. Ecological risk assessment of polycyclic aromatic hydrocarbons(PAHs)in the water from a large Chinese lake based on multiple indicators[J]. Ecological Indicators,2013,24(3):599-608.
[14]SOFOWOTE U M,MCCARRY B E,MARVIN C H. Source apportionment of PAH in Hamilton Harbour suspended sediments:comparison of two factor analysis methods[J]. Environmental Science & Technology,2008,42(16):6007-6014.
[15]PAATERO P,TAPPER U. Positive matrix factorization:a non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics,2010,5(2):111-126.
[16]YU W W,LIU R M,WANG J W,et al. Source apportionment of PAHs in surface sediments using positive matrix factorization combined with GIS for the estuarine area of the Yangtze River,China[J]. Chemosphere,2015,134(12):263-271.
[17]刘哲,张玉山,苏治中,等. 南四湖表层沉积物中PAHs的分布、来源及变化分析[J]. 中国人口·资源与环境,2010,20(6):136-140.
[18]YUNKER M B,MACDONALD R W,VINGAZAN R,et al. PAHs in the Fraser River basin:a critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry,2002,33(4):489-515.
[19]READMAN J W,FILLMANN G,TOLOSA I,et al. Petroleum and PAH contamination of the Black Sea[J]. Marine Pollution Bulletin,2002,44(1):48-62.
[20]YAN B Z,ABRAJANO T A,BOPP R F,et al. Molecular tracers of saturated and polycyclic aromatic hydrocarbon inputs into Central Park Lake,New York City[J]. Environmental Science & Technology,2011,39(18):7012-7019.
[21]KHALILI N R,SCHEFF P A,HOLSEN T M. PAH source fingerprints for coke ovens,diesel and gasoline engines,highway tunnels,and wood combustion emissions[J]. Atmospheric Environment,1995,29(4):533-542.
[22]WANG C H,WU S H,ZHOU S L,et al. Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing:concentration,source,spatial distribution,and potential human health risk[J]. Science of the Total Environment,2015,527-528:375-383.
[23]MIGUEL A H,PEREIRA P P. Benzo(k)fluoranthene,benzo(ghi)perylene,and indeno(1,2,3-cd)pyrene:new tracers of automotive emissions in receptor modeling[J]. Aerosol Science & Technology,1989,10(2):292-295.
[24]SOCLO H H,GARRIGUES P,EWALD M. Origin of polycyclic aromatic hydrocarbons(PAHs)in coastal marine sediments:case studies in Cotonou(Benin)and Aquitaine(France)areas[J]. Marine Pollution Bulletin,2000,40(5):387-396.
[25]GUO Z G,LIN T,ZHANG G,et al. High-resolution depositional records of polycyclic aromatic hydrocarbons in the central continental shelf mud of the East China Sea[J]. Environmental Science & Technology,2006,40(17):5302-5311.
[26]FENG J L,XI N N,ZHANG F,et al. Distributions and potential sources of polycyclic aromatic hydrocarbons in surface sediments from an emerging industrial city(Xinxiang)[J]. Environmental Monitoring and Assessment,2016,188(1):61.
[27]JENKINS B M,JONES A D,TURN S Q,et al. Emission factors for polycyclic aromatic hydrocarbons from biomass burning[J]. Environmental Science & Technology,1996,30(30):2462-2469.
[28]SIMCIK M F,EISENREICH S J,LIOY P S. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan[J]. Atmospheric Environment,1999,33(30):5071-5079.
[29]倪进治,陈卫锋,杨红玉,等. 福州市不同功能区土壤中多环芳烃的含量及其源解析[J]. 中国环境科学,2012,32(5):921-926.
[30]RAJPUT N,PYARI A A,SAINI M K,et al. Assessment of PAH toxicity and mutagenicity in emissions from coal and biofuel combustion[J]. Journal of Environmental Science & Engineering,2010,52(3):185-192.
[31]HARRISON R M,SMITH D J T,LUHANA L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham,U.K.[J]. Environmental Science & Technology,1996,30(3):825-832.
[32]APPLEBY P G,OLDFIELDZ F. The assessment of 210Pb data from sites with varying sediment accumulation rates[J]. Hydrobiologia,1983,103(1):29-35.
[33]WANG D G,TIAN F L,MENG Y,et al. Application of positive matrix factorization to identify potential sources of PAHs in soil of Dalian,China[J]. Environmental Pollution,2009,157(5):1559-1564.
[34]LONG E R,MACDONALD D D,SMITH S L,et al. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments[J]. Environmental Management,1995,19(1):81-97.
[35]NISBET I C T,LAGOY P K. Toxic equivalency factors(TEFs)for polycyclic aromatic hydrocarbons(PAHs)[J]. Regulatory Toxicology & Pharmacology,1992,16(3):290-300.
[36]张录龙,孙敏. 饮用水常规处理工艺对多环芳烃去除的影响[J]. 水资源保护,2013,29(3):66-69.
[37]赵学强,袁旭音,李天元,等. 环太湖河流沉积物中PAHs的空间分布、毒性及源解析[J]. 农业环境科学学报,2015,34(2):345-351.


通讯作者:王延华,博士,教授,博士生导师,研究方向:流域生态环境演变. E-mail:wangyanhua@njnu.edu.cn
更新日期/Last Update: 2020-03-15