[1]郑 鹏,李蔚玲.鼓泡床中电石渣液相碳酸化反应流动特性表征[J].南京师范大学学报(工程技术版),2022,(02):001-8.[doi:10.3969/j.issn.1672-1292.2022.02.001]
 Zheng Peng,Li Weiling.Characteristics of Carbide Slag Slurry Flow in a Bubble Column Reactor[J].Journal of Nanjing Normal University(Engineering and Technology),2022,(02):001-8.[doi:10.3969/j.issn.1672-1292.2022.02.001]
点击复制

鼓泡床中电石渣液相碳酸化反应流动特性表征
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2022年02期
页码:
001-8
栏目:
动力工程及工程热物理
出版日期:
2022-06-30

文章信息/Info

Title:
Characteristics of Carbide Slag Slurry Flow in a Bubble Column Reactor
文章编号:
1672-1292(2022)02-0001-08
作者:
郑 鹏李蔚玲
(南京师范大学能源与机械工程学院,江苏 南京 210023)
Author(s):
Zheng PengLi Weiling
(School of Energy and Mechanical Engineering,Nanjing Normal University,Nanjing 210023,China)
关键词:
鼓泡床多相流气泡概率密度函数压力脉动分析电石渣液相碳酸化
Keywords:
bubble columnmultiphase flowbubbleprobability density functionpressure fluctuation signal analysiscarbide slag aqueous carbonation
分类号:
O359
DOI:
10.3969/j.issn.1672-1292.2022.02.001
文献标志码:
A
摘要:
搭建了气液固鼓泡床实验系统,对碱性固体废弃物电石渣固定CO2进行实验研究. 流动特性对鼓泡床反应器传质、产率和产品质量都有较大的影响. 通过压力脉动信号采集与分析,对实际反应体系CO2-H2O-电石渣的流动特性进行表征,给出重要参数液固比对三相反应流流动特性的影响机制. 结果表明:基于时间域的概率密度函数和自相关函数分析发现,在低气速0.062 m·s-1下,增大液固比,压力脉动分布变化较小,但自相关分析可进一步揭示液固比的增大加大了气泡运动的不稳定性. 在气速0.102 m·s-1下,液固比增大会加大压力脉动分布范围,且延迟时间增大,自相关性降低,表征床内流动表现出更多的随机性和混沌特征. 结合流动图像,液固比增大使大气泡容易聚并生成. 基于时频域的Hilbert-Huang变换分析,获得了时间-频率-幅度谱图. 低气速下,三相流运动频率高,幅值低,增大液固比后,三相流运动频率降低,幅值增大,揭示液固比增大后,三相流系统中高频的小气泡运动特性降低,大气泡聚并发生促进能量幅值增大,该结果为进一步研究流动对碳酸化反应影响机理奠定了基础.
Abstract:
A gas-liquid-solid bubble column experimental system is set up and the direct aqueous carbonation of the carbide slag is experimentally evaluated and studied. Hydrodynamics of the bubble column has a great effect on the bed mass transfer and product yield and quality. The flow behaviors for a real reaction system of CO2-H2O-carbide slag are characterized through the bed pressure signal analyzation. The effect of the important parameter liquid to solid(L/S)ratio on the flow dynamics of the three-phase reacting flow is revealed. The time domain and the time-frequency domain analysis of the signals are carried out. The results show that the curves of the probability density function have the similar distributions when increasing the L/S ratio at 0.062 m·s-1. The results of the auto-correlation function analysis reveal that the bed bubble flow is unsteady and irregular at 0.062 m·s-1 when increasing the L/S ratio. The change amplitudes of the pressure signals become wider at 0.102 m·s-1 with an increase in the L/S ratio. The delay time increases in this condition which indicates that the pressure signals are not similar and the three-phase flow is more random and stochastic. The large bubbles are easier to form when observing the flow images. The time-frequency-amplitude spectrums are obtained and it is found that the three-phase flow has the lower frequency and the higher energy amplitude with an increase in the L/S ratio,which contributes by the bubble coalescence. This work gives a theoretical basis for the further study on the effect of the flow dynamics on the carbonation reactions.

参考文献/References:

[1] YOU Q,WU S Y,WU Y Q,et al. Product distributions and characterizations for integrated mild-liquefaction and carbonization of low rank coals[J]. Fuel Processing Technology,2017,156:54-61.
[2]AIL S S,DASAPPA S. Biomass to liquid transportation fuel via fischer tropsch synthesis-technology review and current scenario[J]. Renewable and Sustainable Energy Reviews,2016,58:267-286.
[3]WU W,HAN B,GAO H,et al. Desulfurization of flue gas:SO2 absorption by an ionic liquid[J]. Angewandte Chemie International Edition,2004,43(18):2415-2417.
[4]MOTA A,VICENTE A A,TEIXEIRA J. Effect of spent grains on flow regime transition in bubble column[J]. Chemical Engineering Science,2011,66(14):3350-3357.
[5]SONG H S,RAMKRISHNA D,TRINH S,et al. Multiplicity and sensitivity analysis of Fischer-Tropsch bubble column slurry reactors:Plug-flow gas and well-mixed slurry model[J]. Chemical Engineering Science,2003,58(12):2759-2766.
[6]BARGHI S,PRAKASH A,MARGARITIS A,et al. Flow regime identification in a slurry bubble column from gas holdup and pressure fluctuations analysis[J]. The Canadian Journal of Chemical Engineering,2004,82(5):865-870.
[7]JHAWAR A,PRAKASH A. Heat transfer in a slurry bubble column reactor:A critical overview[J]. Industrial & Engineering Chemistry Research,2011,51(4):1464-1473.
[8]XIE P F,LI L Q,HE Z C,et al. Gas-liquid mass transfer of carbon dioxide capture by magnesium hydroxide slurry in a bubble column reactor[J]. Journal of Central South University,2019,26(6):1592-1606.
[9]CHENG L,LI T,KEENER T,et al. A mass transfer model of absorption of carbon dioxide in a bubble column reactor by using magnesium hydroxide slurry[J]. International Journal of Greenhouse Gas Control,2013,17:240-249.
[10]LI T,KEENER T C,CHENG L. Carbon dioxide removal by using Mg(OH)2 in a bubble column:Effects of various operating parameters[J]. International Journal of Greenhouse Gas Control,2014,31:67-76.
[11]PAN S Y,CHIANG A,CHANG E,et al. An innovative approach to integrated carbon mineralization and waste utilization:A review[J]. Aerosol and Air Quality Research,2015,15:1072-1091.
[12]LEE M G,KANG D,JO H,et al. Carbon dioxide utilization with carbonation using industrial waste-desulfurization gypsum and waste concrete[J]. Journal of Material Cycles and Waste Management,2016,18(3):407-412.
[13]TAN W,ZHANG Z,LI H,et al. Carbonation of gypsum from wet flue gas desulfurization process:Experiments and modeling[J]. Environmental Science and Pollution Research,2017,24(9):8602-8608.
[14]孙荣岳,叶江明,毕小龙,等. 丙酸改性提高电石渣捕集CO2性能的动力学分析[J]. 化工进展,2017,36(6):2325-2330.
[15]马晓彤,李英杰,王文静,等. 间歇氯化对电石渣循环捕集CO2性能的影响[J]. 化工学报,2016,67(12):5268-5275.
[16]PAN S Y,LIU H L,CHANG E E,et al. Multiple model approach to evaluation of accelerated carbonation for steelmaking slag in a slurry reactor[J]. Chemosphere,2016,154:63-71.
[17]CHANG E E,CHIU A C,PAN S Y,et al. Carbonation of basic oxygen furnace slag with metalworking wastewater in a slurry reactor[J]. International Journal of Greenhouse Gas Control,2013,12:382-389.
[18]SASIC S,LECKNER B,JOHNSSON F. Characterization of fluid dynamics of fluidized beds by analysis of pressure fluctuations[J]. Progress in Energy and Combustion Science,2007,33(5):453-496.
[19]JOHNSSON F,ZIJERVELD R,SCHOUTEN J V,et al. Characterization of fluidization regimes by time-series analysis of pressure fluctuations[J]. International Journal of Multiphase Flow,2000,26(4):663-715.
[20]OMMEN J R,SASIC S,SCHAAF J,et al. Time-series analysis of pressure fluctuations in gas-solid fluidized beds—A review[J]. International Journal of Multiphase Flow,2011,37(5):403-428.
[21]DING W,CHEN Q,SUN H,et al. Modified phosphogypsum sequestrating CO2 and characteristics of the carbonation product[J]. Energy,2019,182:224-235.
[22]RUZICKA M,DRAHO J,FIALOVA M,et al. Effect of bubble column dimensions on flow regime transition[J]. Chemical Engineering Science,2001,56(21/22):6117-6124.
[23]KRISHNA R,ELLENBERGER J,MARETTO C. Flow regime transition in bubble columns[J]. International Communications in Heat and Mass Transfer,1999,26(4):467-475.
[24]BOYER C,DUQUENNE A M,WILD G. Measuring techniques in gas-liquid and gas-liquid-solid reactors[J]. Chemical Engineering Science,2002,57(16):3185-3215.
[25]RUTHIYA K C,CHILEKAR V P,WARNIER M J,et al. Detecting regime transitions in slurry bubble columns using pressure time series[J]. AIChE Journal,2005,51(7):1951-1965.
[26]BRIENS L A,ELLIS N. Hydrodynamics of three-phase fluidized bed systems examined by statistical,fractal,chaos and wavelet analysis methods[J]. Chemical Engineering Science,2005,60(22):6094-6106.
[27]TAOFEEQ H,AL DAHHAN M H. Effect of vertical internals on the pressure drop in a gas-solid fluidized bed[J]. The Canadian Journal of Chemical Engineering,2018,96(10):2185-2205.
[28]LUO L,YAN Y,XU Y,et al. Time-frequency analysis based flow regime identification methods for airlift reactors[J]. Industrial & Engineering Chemistry Research,2012,51(20):7104-7112.
[29]LUO L,YAN Y,XIE P,et al. Hilbert-huang transform,hurst and chaotic analysis based flow regime identification methods for an airlift reactor[J]. Chemical Engineering Journal,2012,181:570-580.
[30]XIANG J,LI Q,WANG A,et al. Mathematical analysis of characteristic pressure fluctuations in a bubbling fluidized bed[J]. Powder Technology,2018,333:167-179.
[31]LI W L,ZHONG W Q,JIN B S,et al. Flow regime identification in a three-phase bubble column based on statistical,Hurst,Hilbert-Huang transform and Shannon entropy analysis[J]. Chemical Engineering Science,2013,102:474-485.
[32]HUANG N E,SHEN Z,LONG S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A:Mathematical,Physical and Engineering Sciences,1998,454(1971):903-995.
[33]郑鹏,李蔚玲,赵传文,等. 鼓泡床中电石渣直接液相碳酸化过程气泡特性研究[C]//中国工程热物理学会多相流会议. 大连,中国,2020.

备注/Memo

备注/Memo:
收稿日期:2021-06-28.
基金项目:国家自然科学基金项目(51706108)、江苏省高校自然科学研究面上项目(17KJB470008)、南京师范大学科研启动项目(184080H202B73).
通讯作者:李蔚玲,博士,讲师,研究方向:气液固流动特性. E-mail:liweiling06@njnu.edu.cn
更新日期/Last Update: 1900-01-01