基于 LQI的节点测距实验研究

朱虔劼1,褚红燕2

(1南京师范大学 电气与自动化工程学院,江苏 南京 210042

2 南京师范大学 能源与机械工程学院, 江苏 南京 210042)

[摘要] 为了增强测量系统中的线性度和精度,将 LQ [测距法应用于室内定位系统中. 在基于 Z_{igB} e 的硬件平台上,结合室内环境进行了测距实验,并建立了经验模型. 实验结果表明, LQ I在短距离测量中有较好的线性度和精度, 在室内测距的应用中效果较好.

[关键词] ZigBee, LQI, RSSI测距

[中图分类号] TP212 9 [文献标识码] B [文章编号] 1672-1292(2010) 03-0040-04

Experim en tal Analysis of Nodes D istance M easurem ent Based on LQI Zhu Oʻan jie¹. Chu Hongvan²

- $(1.\ S\ chool\ of\ E\ lectrical\ and\ A\ utom\ ation\ Eng\ ineering\ \ N\ an\ jing\ N\ o\ m\ al\ U\ n\ iversity,\ \ N\ an\ jing\ 210042,\ \ Ch\ ina,$
 - 2 School of Energy and Mechanical Engineering Nanjing Normal University, Nanjing 210042, China)

Abstract In order to enhance the linearity and precision of measurement system, a new method of distance measuring based on LQI is applied to indoor bealization system in this paper. Experiments are carried out on ZigBee-based hardware platforms in indoor circumstance. A coording to the experimental data, the scientific modeling of indoor distance measurement is produced. The results indicate that LQI has a good linearity and precision on measuring short distance and can achieve better results in indoor distance measurements.

Key words ZigBee, LQI, RSSI, distance measurement

随着现代移动通信技术和无线网络的蓬勃发展,人们对定位的需求与日俱增,尤其在复杂的室内环境,如机场大厅、写字楼、仓库、图书馆、矿井等环境中,常常需要确定移动终端、设施与物品在室内的位置信息.为了获得准确的位置关系,距离的测量估计成为了室内定位系统的基础.

关于在室内环境进行测距和定位的研究^[1,2],采用的主要技术有: GPS 室内定位技术, 由于信号受建筑物的影响十分明显, 应用比较局限; 超声波技术, 其精度可以达到 $15 \text{ cm}^{[3]}$, 但硬件投资大, 成本较高; 蓝牙和 W LAN 技术, 精度可以达到 $1 \text{ m}^{[4]}$, 但是设备昂贵, 功耗较高.

目前越来越多的应用直接利用现成的 ZigBee无线通讯模块来估计对象节点的位置. Zigbee技术作为一种新兴的低成本、低功耗、低数据传输速率、低复杂度的短距离无线通信技术,满足了小型、低成本的固定、便携或移动设备无线联网的要求.

本文在分析对比常用测距技术的基础上,利用已有硬件设备,提出采用基于 ZigBee标准的 LQI(Link Quality Indication)值在室内环境中进行测距实验,使用高斯模型对实验数据进行误差处理后建立了经验模型,进行了测距分析,取得了较好的测距精度.

1 LQI测距方法

在基于测距的定位算法中,常用的测量无线节点间距离的技术有 $^{[5]}$:接受信号强度 (RSSI)测距法、信号到达时间 (TOA)测距法、信号到达时间差 (TDOA)测距法和信号到达角度 (AOA)测距法.

收稿日期: 2010-05-18

基金项目: 国家自然科学基金 (60835001).

通讯联系人:褚红燕,实验师,研究方向: 网络控制系统、非线性系统. E-mail njnuchuhongyan@ 163. com

RSS I是目前无线传感器网络定位技术中较常采用的方法. 有实验研究表明 $^{[67]}$, 在室内的无线传感器网络中使用 RSS I来测距. 反射、散射和障碍物等不稳定因素会对 RSS I的测量产生极大的影响 $^{[8]}$.

一些新型的基于 IEEE 802. 15.4 标准的无线芯片中,采用了一个比 RSSI更好的参数指标 LQI^{9} . LQI 表征链路信号质量,其大小基于信号强度以及检测到的信噪比 (SNR),由 MAC层计算得到并提供给上一层,一般与正确接收到数据帧的概率有关. LQI的动态范围比 RSSI大,具有更高的分辨率,同时有实验表明,在小于 $10\,\mathrm{m}$ 的范围内, LQI的信号质量相对 RSSI更稳定,可首选 LQI进行计算,能够得到更宽的线性度,从而提高定位精度 I^{10} .

结合实际应用的室内环境,本文将根据 LQ I值与节点间距离的关系建立模型,分析测距的精度.

2 LQI测距实验

2.1 硬件系统介绍

实验使用宁波深联科技公司 GA NSJ节点 (如图 1所示), 完成收发节点之间的通信以及 LQ I值的读取采集. GA NSJ节点采用 JENN IC公司的 JN5121-Z01-M 01 无线微控制器模块, 该模块集成了 32位 R BC核心以及完全兼容 2.4 GHz EEE 802. 15. 4的收发器, 同时还集成了128 kb的 FLASH, 64 kb的 ROM, 96 kb的 RAM.

№5121内置的 ROM 存储器中集成了点对点通信和网状网络通信的完整协议栈. 而其内置的 RAM 存储器, 可以支持网络路由和控制器功能而不需要外部扩展任何的存储空间. 内置的硬件 MAC 地址和高度安全的 AES加密算法加速器, 减小了系统的功耗和处理器的负

图 1 GAINSJ 节点 Fig.1 GAINSJ Node

载.它还支持晶振休眠和系统节能功能,同时提供了对于大量的模拟和数字外设的互操作支持,可以方便地连接到用户的外部应用系统.

2.2 实验环境与方法

LQ I是用于表征无线网络连接质量的物理量, 在数据解调之后得到, 取值范围为 0~ 255 针对不同的环境, LQ I和距离表现出不同的关系. 通常处理这类关系有两种方法, 第一类是通过理论分析, 得到距离和信号强度的经验模型, 另一类是通过大量的实测数据统计得到两者之间的关系.

结合使用环境, 实验在宽敞的室内房间进行, 通过实际测量建立 LQ I值在 $12\,m$ 的范围内随距离变化的衰落曲线. 本文使用两块 GA NSJ节点完成 LQ I值测量, 发射强度为默认输出功率 0 dBm, 并在如下的一系列距离点上测量 LQ I值: 0.5 1.2 3.4 5.6 7.8 9.10 11, $12\,m$, 每个距离点上采集 100 次 LQ I值, 此实验测量反复进行 10 次.

同时针对 LQ I在实际测量环境中易受干扰、稳定性较差等问题,为了提高测量精度并建立静态环境下的曲线、采用高斯模型对测量数据进行处理.

将节点在同一位置时接收到的 LQ I测量值记录到对应的数组 LQ I value []中,运用高斯分布函数处理这些 LQ I值.

$$L = \frac{1}{n} \sum_{i=1}^{n} L_i \tag{1}$$

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (L_i - L)^2, \tag{2}$$

$$F(L) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{(L-L)^2}{2\sigma^2}} \ge 0.6,$$
 (3)

$$LQI = \frac{1}{m} \sum_{i=1}^{m} Gauss. V a lue[i].$$
 (4)

高斯模型可以消除小概率的扰动,但是对于室内环境存在的墙壁反射、障碍物等因素对信号产生的影

响并不能很好地解决.

2.3 实验结果

首先将发射节点与接收节点同时置于地面,衰落曲线如图 2所示.可以看出信号衰弱幅度很大,当节点距离增加至 5m,接收信号强度明显减弱,甚至无法接收数据.

Sham ir A 研究证明: 当接收天线与发射天线置于同一发射面上时,接收信号明显变差,这种现象被描述为"2-ray"模型.接收功率是直射波和反射波互相干扰后得出的功率,天线离地面越近,信号衰落越快. 当频率为 2.4 GH z时,天线高度为 0.5 m,可由公式算出当通信距离大于 8m 时信号衰落才会加快^[11].

因此将接收节点与发射节点的放置高度提升至 lm, 重新进行实验以获得更为准确的衰落曲线. 结果如图 3所示, 信号衰落幅度明显减缓. 图中离散点为在每个距离上所测得的经高斯模型处理后的 LQ I值, 折线表示每一次实际测量的数据. 从实测数据的分布可以看出, 在 0~ 10 m 的范围内, LQ I值的衰减趋势较为明显, 分辨率较高; 距离大于 10 m, 曲线逐渐平坦, 变化幅度减弱, 因此节点间距离在超过 10 m 之后, 采用 IQ I值进行测距效果不明显.

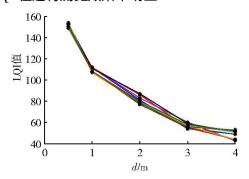


图 2 LQI 信号衰落曲线(天线高度 0 m)

Fig.2 LQI path loss model (antenna height 0 m)

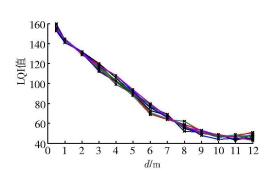


图 3 LQI 信号衰落曲线(天线高度 1 m)

Fig.3 LQI path loss model (antenna height 1 m)

2.4 曲线拟合

为了建立距离 d 与 LQ I的经验模型,针对大量的实验数据采取最小二乘法,寻找与原数据误差最小的匹配函数,得:

$$s = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (L_i - f(d_i))^2,$$
 (5)

式中, N 为总的样本个数; L_i 为对应距离 d_i 测得的 LQ I值; $f(d_i)$ 为目标匹配函数. 为使误差平方和 s最小, 采取了以下不同的函数模型进行拟合:

(1) 自由空间的无线电传播路径损耗模型:

$$f(d) = a_1 + a_2 \lg(d);$$
 (6)

(2) 指数模型:

$$f(d) = a_1 + a_2 e^{a_3 d}; (7)$$

(3) 多项式模型:

$$f(d) = a_1 d^3 + a_2 d^2 + a_3 d + a_4. (8)$$

如图 4所示,图中离散点为实际测量数据,实线为针对 3种模型采用最小二乘法得到的曲线,可以看出多项式模型与原数据的拟合程度最好.因此,采用多项式函数模型作为经验公式,对节点距离进行估计,同时也可为在相同环境中所进行的节点定位提供参考.

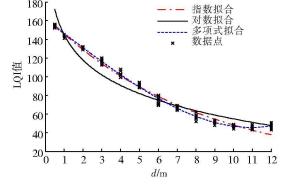


图 4 数据拟合结果

Fig.4 Data fitting results

3 测距结果分析

为了验证经曲线拟合所得经验公式的有效性, 重新选择了实验环境, 但由于实际的室内距离受限制, 在 8 m 的范围内进行了实验, 将发射节点与接收节点置于 1 m 的高度, 并尽量使发射节点位于实验环境的

中心位置,以避免墙面反射、障碍物等不稳定因素.为保证实时性,每个采样点仅采集 10次 LQ I值,取均值作为最终实测数据.将实际测得的 LQ I值代入经验公式,换算出对应的距离,实验结果如表 1所示.

表 1 测距精度分析

Table 1	Accuracy	οf	distance m	ea sur em en ts
Iabici	Accui acy	VI.	u istairee iii	ca sui un cir is

实测距离 (d/m)	0. 5	1	2	3	4	5	6	7	8
最大偏差	0. 21	0. 24	0. 44	0. 25	0.08	0. 45	0. 51	0. 31	0. 65
最小偏差	0.09	0. 11	0. 28	0.06	0.01	0. 18	0. 22	0. 12	0. 29
平均偏差	0. 12	0. 17	0. 36	0. 15	0.05	0. 28	0. 38	0. 20	0. 49

从结果分析,在 8 m 的近距离范围内,最大测距误差为 0.65 m,约为测量距离的 8.1%,可以满足大多数无线传感器网络节点定位的要求,但是远距离的测距误差可能较大,同时在局部位置,偏差波动较大.本实验所采用的硬件系统、实验方法、数据处理过程、曲线拟合方法等直接导致了测距误差的产生,而主要的原因是 LQ I信号本身不稳定,在室内环境反射、折射效应明显;同时节点的发射功率较小,在受到阻挡时,信号衰减较大.

4 结语

本文基于 LQ I测距进行了实验分析和论证,并在室内环境的近距离测量中,取得了较好的效果,为基于 LQ I值的室内定位提供了参考.为了提高信号的质量,以获得更好的室内测距效果,测距节点应尽量增加天线高度,避免障碍物和环境等产生的影响.同时在以后的工作中,可以进一步提高测量节点密度,采用分段逼近的方法来得到更精确的分段逼近曲线,从而减少数据拟合产生的误差,提高测距精度,进一步提高以 LQ I为测距基础的室内定位系统的定位精度.

[参考文献] (References)

- [1] Noh A, Lee W, Ye J Comparison of the mechanisms of the Zigbee's indoor localization algorithm [C] // Ninth ACIS International Conference on SNPD. Korea 2008 13-18
- [2] Park W, Yoon M. The implementation of indoor location system to control ZigBee home network [C] // Proceedings of IEEE SICE-ICA SE. Busan, 2006; 2:158-2:161
- [3] Sherratt R.S., Makino Numerical precision requirements on the multiband ultra-wideband system for practical consumer electronic devices [J]. EEE Transactions on Consumer Electronics 2005, 51(2): 386-392
- [4] Pablo Corral, Eladio Pesa, Ricardo Garcia, et al. Distance estimation system based on ZigBee [C] // 11th IEEE International Conference on Computational Science and Engineering-Workshops San Pauls, 2008, 405-411.
- [5] 段渭军, 王建刚, 王福豹. 无线传感器网络节点定位系统与算法的研究和发展 [J]. 信息与控制, 2006, 35(2): 239-245. Duan Weijun, Wang Jiangang, Wang Fubao. Research and development of localization systems and algorithms for wireless sensor networks [J]. Information and Control. 2006, 35(2): 239-245. (in Chinese)
- [6] Sugano M, Kawazoe T, Ohta Y, et al. Indoor localization system using RSSI measurement of wireless sensor network based on ZigBee standard [C] // Proceedings of the 6th ASTED International Multi-Conference on Wireless and Optical Communications CANDA: Banff 2006 503-508
- [7] Cho H, Kang M, Park J, et al. Performance analysis of boation estimation algorithm in ZigBee networks using received signal strength [C] // 21st IEEE International Conference on A.N.A. Niagara Falls. Ont. 2007. 302–306.
- [8] Benkic K, Malajner M, Planin Dir P, et al. Using RSSI value for distance estimation in wireless sensor networks based on Zig-Bee [C] // Proceedings of 15th International Conference on Systems, Signals and Image Processing Slovakia Bratislava 2008 303–306
- [9] Kannan Srinivasan, Philip Levis RSSI is under appreciated [C] // Proceedings of the Third Workshop on Embedded Networked Sensors USA: Harvard, 2006, 1-5
- [10] 张洁颖, 孙懋珩, 王侠. 基于 RSSI和 LQ I的动态距离估计算法 [J]. 电子测量技术, 2007, 30(2): 142-145

 Zhang Jieying, SunM aohang W ang X ia Dynam ic distance estimation method based on RSSI and LQ I[J]. Electronic Measurement Technology, 2007, 30(2): 142-145 (in Chinese)
- [11] Sham ir A. 无线电传播简介: 专用术语,室内传播和路径损耗及实例[J]. 今日电子,2002(S1): 26-30
 Sham ir A. Breif introduction of rad ion propagation term in obgy, indoor propagation, pass bss and examples[J]. Electronic Products, 2002(S1): 26-30 (in Chinese)