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On-ine Output Monitoring of Time—-Variant Nonlinear System
Based on Bayesian Inferring Model
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Abstract: The implementation idea and solution are proposed in this article for the output on-line monitoring of the time—
variant nonlinear system by using bayesian inferring model ( BIM) . Firstly the on-ine monitoring problem of nonlinear
system is described. Then the BIM structure and training methods are introduced. The characteristics of the BIM include
that the sample data for offdine training are from the closed loop system and the optimization algorithm for the threshold
matrix D is selected as the improved foraging optimization algorithm ( TEFOA) . While in the ondine applications the
sliding window data are used to update the structure of the BIM for the onine tracing of the system output. The time-va—
riant nonlinear object is employed to validate the on-ine monitoring ability of the BIM. The simulation results indicate
that the BIM is adapted to the system on-ine output monitoring and owns the characteristics of easy design high accura—
cy tracing ability and etc which provide a kind of data prediction method for the lowest system.
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Fig.2 Structure of Bayesian inferring model
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